17 research outputs found

    Transient Receptor Potential 1 Regulates Capacitative Ca2+ Entry and Ca2+ Release from Endoplasmic Reticulum in B Lymphocytes〉

    Get PDF
    Capacitative Ca2+ entry (CCE) activated by release/depletion of Ca2+ from internal stores represents a major Ca2+ influx mechanism in lymphocytes and other nonexcitable cells. Despite the importance of CCE in antigen-mediated lymphocyte activation, molecular components constituting this mechanism remain elusive. Here we demonstrate that genetic disruption of transient receptor potential (TRP)1 significantly attenuates both Ca2+ release-activated Ca2+ currents and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from endoplasmic reticulum (ER) in DT40 B cells. As a consequence, B cell antigen receptor–mediated Ca2+ oscillations and NF-AT activation are reduced in TRP1-deficient cells. Thus, our results suggest that CCE channels, whose formation involves TRP1 as an important component, modulate IP3 receptor function, thereby enhancing functional coupling between the ER and plasma membrane in transduction of intracellular Ca2+ signaling in B lymphocytes

    The high-affinity calcium[bond]calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin.

    No full text
    Modulation of the inositol 1,4,5-trisphosphate (InsP(3)) receptors (InsP(3)R) by cytosolic calcium (Ca(2+)) plays an essential role in Ca(2+) signalling, but structural determinants and mechanisms responsible for the InsP(3)R regulation by Ca(2+) are poorly understood. In the present study, we expressed rat InsP(3)R type 1 (InsP(3)R1) in Spodoptera frugiperda cells using a baculovirus-expression system and reconstituted the recombinant InsP(3)R1 into planar lipid bilayers for functional analysis. We observed only minor effects of 0.5 mM of calmodulin (CaM) antagonist W-7 on the Ca(2+) dependence of InsP(3)R1. Based on a previous analysis of mouse InsP(3)R1 [Yamada, Miyawaki, Saito, Nakajima, Yamamoto-Hino, Ryo, Furuichi and Mikoshiba (1995) Biochem J. 308, 83-88], we generated the Trp(1577)-->Ala (W1577A) mutant of rat InsP(3)R1 which lacks the high-affinity Ca(2+)[bond]CaM-binding site. We found that the W1577A mutant displayed a bell-shaped Ca(2+) dependence similar to the wild-type InsP(3)R1 in planar lipid bilayers. Activation of B cell receptors resulted in identical Ca(2+) signals in intact DT40 cells lacking the endogenous InsP(3)R and transfected with the wild-type InsP(3)R1 or the W1577A mutant cDNA subcloned into a mammalian expression vector. In the planar lipid bilayer experiments, we showed that both wild-type InsP(3)R1 and W1577A mutant were equally sensitive to inhibition by exogenous CaM. From these results, we concluded that the interaction of CaM with the high-affinity Ca(2+)[bond]CaM-binding site in the coupling domain of the InsP(3)R1 does not play a direct role in biphasic modulation of InsP(3)R1 by cytosolic Ca(2+) or in InsP(3)R1 inhibition by CaM

    Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling

    No full text
    Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns

    Functional and Biochemical Analysis of the Type 1 Inositol (1,4,5)-Trisphosphate Receptor Calcium Sensor

    Get PDF
    Modulation of the type 1 inositol (1,4,5)-trisphosphate receptors (InsP(3)R1) by cytosolic calcium (Ca(2+)) plays an essential role in their signaling function, but structural determinants and mechanisms responsible for the InsP(3)R1 regulation by Ca(2+) are poorly understood. Using DT40 cell expression system and Ca(2+) imaging assay, in our previous study we identified a critical role of E2100 residue in the InsP(3)R1 modulation by Ca(2+). By using intrinsic tryptophan fluorescence measurements in the present study we determined that the putative InsP(3)R1 Ca(2+)-sensor region (E1932–R2270) binds Ca(2+) with 0.16 μM affinity. We further established that E2100D and E2100Q mutations decrease Ca(2+)-binding affinity of the putative InsP(3)R1 Ca(2+)-sensor region to 1 μM. In planar lipid bilayer experiments with recombinant InsP(3)R1 expressed in Spodoptera frugiperda cells we discovered that E2100D and E2100Q mutations shifted the peak of the InsP(3)R1 bell-shaped Ca(2+) dependence from 0.2 μM to 1.5 μM Ca(2+). In agreement with the biochemical data, we found that the apparent affinities of Ca(2+) activating and inhibitory sites of the InsP(3)R1 were 0.2 μM for the wild-type channels and 1–2 μM Ca(2+) for the E2100D and E2100Q mutants. The results obtained in our study support the hypothesis that E2100 residue forms a part of the InsP(3)R1 Ca(2+) sensor

    Fatal peritoneal dialysis-associated peritonitis caused by Mycobacterium mageritense: a case report with review

    No full text
    Abstract Background Peritonitis is a serious and potentially fatal complication of peritoneal dialysis. We report a case of fatal peritonitis caused by Mycobacterium mageritense that was detected for the first time in peritonitis. Case presentation A male patient in his 60 s undergoing peritoneal dialysis was admitted for catheter diversion with exit-site renewal. The patient had a refractory exit-site infection. Mycobacterial culture was not performed at the exit site prior to admission. After the surgery, the patient developed a fever, and a cloudy effluent was observed. Various antibiotics, including anti-tuberculosis drugs, were administered; however, his symptoms did not improve. The catheter was removed on the thirty-seventh day of admission. Bacteria positive for Ziehl–Neelsen staining were found in the peritoneal sample collected during the surgery. Since nontuberculous mycobacteria were considered the cause of peritonitis, the patient was administered imipenem/cilastatin, amikacin, and clarithromycin. However, he died of septic shock on the fifty-first day after admission. Mycobacterium mageritense was detected in the ascites culture after death. Conclusion This is, to our knowledge, the first report of peritonitis caused by Mycobacterium mageritense. In patients undergoing peritoneal dialysis, when a refractory exit-site infection is observed, mycobacterial culture is necessary to prevent the development of peritonitis

    Crystallization and preliminary X-ray diffraction studies of an RNA aptamer in complex with the human IgG Fc fragment

    No full text
    An RNA aptamer in complex with the human IgG Fc fragment have been crystallized. The stirring technique with a rotary shaker was used to improve the crystals and to ensure that they were of high quality and single, resulting in crystals that diffracted to 2.2 Å resolution
    corecore