23 research outputs found

    Activation of epidermal growth factor receptor signaling by the prostaglandin E2 receptor EP4 pathway during gastric tumorigenesis

    Get PDF
    金沢大学がん進展制御研究所Cyclooxygenase-2 (COX-2) plays an important role in tumorigenesis through prostaglandin E2 (PGE2) biosynthesis. It has been shown by in vitro studies that PGE2 signaling transactivates epidermal growth factor receptor (EGFR) through an intracellular mechanism. However, the mechanisms underlying PGE2-induced EGFR activation in in vivo tumors are still not fully understood. We previously constructed transgenic mice that develop gastric tumors caused by oncogenic activation and PGE2 pathway induction. Importantly, expression of EGFR ligands, epiregulin, amphiregulin, heparin-binding EGF-like growth factor, and betacellulin, as well as a disintegrin and metalloproteinases (ADAMs), ADAM8, ADAM9, ADAM10, and ADAM17 were significantly increased in the mouse gastric tumors in a PGE2 pathway-dependent manner. These ADAMs can activate EGFR by ectodomain shedding of EGFR ligands. Notably, the extensive induction of EGFR ligands and ADAMs was suppressed by inhibition of the PGE2 receptor EP4. Moreover, EP4 signaling induced expression of amphiregulin and epiregulin in activated macrophages, whereas EP4 pathway was required for basal expression of epiregulin in gastric epithelial cells. In contrast, ADAMs were not induced directly by PGE2 in these cells, suggesting indirect mechanism possibly through PGE2-associated inflammatory responses. These results suggest that PGE2 signaling through EP4 activates EGFR in gastric tumors through global induction of EGFR ligands and ADAMs in several cell types either by direct or indirect mechanism. Importantly, gastric tumorigenesis of the transgenic mice was significantly suppressed by combination treatment with EGFR and COX-2 inhibitors. Therefore, it is possible that inhibition of both COX-2/PGE2 and EGFR pathways represents an effective strategy for preventing gastric cancer. © 2011 Japanese Cancer Association

    Morphology and development of a lung fluke of the genus Paragonimus (Trematoda : Paragonimidae) from primor’e, USSR, in snails, Semisulcospira libertine, in the Laboratory

    Get PDF
    Experiments were made to infect Japanese snails, Semisulcospira libertine, with miracidia of a lung fluke, Paragonimus sp., from Primor’e, USSR, in the laboratory. Cercariae developed fully at above 25℃ in about 9 weeks after infection. The miracidium, sporocyst, mother and daughter rediae, and cercaria are described. The development of the fluke in the snail is outlined. The fluke is considered most closely related to P. westermani ichunensis Chung, Hsu et Kao, 1978. Cercariae of three other species of natural infection also were found in the snails used. The fluke cercariae were recovered at much higher rates from the snails infected concurrently with the fluke and Cercaria incerta than from those infected with in other combinations of the trematodes. A positive intramolluscan interaction between the fluke and C. incerta is suggested

    Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors

    Get PDF
    金沢大学がん研究所Background & Aims Helicobacter pylori infection induces an inflammatory response, which can contribute to gastric tumorigenesis. Induction of cyclooxygenase-2 (COX-2) results in production of prostaglandin E2 (PGE2), which mediates inflammation. We investigated the roles of bacterial infection and PGE2 signaling in gastric tumorigenesis in mice. Methods We generated a germfree (GF) colony of K19-Wnt1/C2mE mice (Gan mice); these mice develop gastric cancer. We examined tumor phenotypes, expression of cytokines and chemokines, and recruitment of macrophages. We also investigated PGE2 signaling through the PGE2 receptor subtype 4 (EP4) in Gan mice given specific inhibitors. Results Gan mice raised in a specific pathogen-free facility developed large gastric tumors, whereas gastric tumorigenesis was significantly suppressed in GF-Gan mice; reconstitution of commensal flora or infection with Helicobacter felis induced gastric tumor development in these mice. Macrophage infiltration was significantly suppressed in the stomachs of GF-Gan mice. Gan mice given an EP4 inhibitor had decreased expression of cytokines and chemokines. PGE2 signaling and bacterial infection or stimulation with lipopolysaccharide induced expression of the chemokine C-C motif ligand 2 (CCL2) (which attracts macrophage) in tumor stromal cells or cultured macrophages, respectively. CCL2 inhibition suppressed macrophage infiltration in tumors, and depletion of macrophages from the tumors of Gan mice led to signs of tumor regression. Wnt signaling was suppressed in the tumors of GF-Gan and Gan mice given injections of tumor necrosis factor-α neutralizing antibody. Conclusions Bacterial infection and PGE2 signaling are required for gastric tumorigenesis in mice; they cooperate to up-regulate CCL2, which recruits macrophage to gastric tumors. Macrophage-derived tumor necrosis factor-α promotes Wnt signaling in epithelial cells, which contributes to gastric tumorigenesis. © 2011 AGA Institute

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Trapping of large numbers of larvae in the livers of Toxocara canis

    No full text
    corecore