116 research outputs found

    Proliferation and cell death of human glioblastoma cells after carbon-ion beam exposure: Morphologic and morphometric analyses

    Get PDF
    Histological analyses of glioblastoma cells after carbon-ion exposure are still limited and ultrastructural characteristics have not been investigated in detail. Here we report the results of morphological and morphometric analyses of a human glioblastoma cell line, CGNH-89, after ionizing radiation to characterize the effect of a carbon-beam on glioblastoma cells. Using CGNH-89 cells exposed to 0–10 Gy of X-ray (140kVp) or carbon-ions (18.3 MeV/nucleon, LET = 108 keV/μm), we performed conventional histology and immunocytochemistry with MIB-1 antibody, transmission electron microscopy, and computer-assisted, nuclear size measurements. CGNH-89 cells with a G to A transition in codon 280 in exon 8 of the TP53 gene had nuclei with pleomorphism, marked nuclear atypia and brisk mitotic activity. After carbon-ion and X-ray exposure, living cells showed decreased cell number, nuclear condensation, increased atypical mitotic figures, and a tendency of cytoplasmic enlargement at the level of light microscopy. The deviation of the nuclear area size increased during 48 hours after irradiation, while the small cell fraction increased in 336 hours. In glioblastoma cells of the control, 5 Gy carbon-beam, and 10 Gy carbon-beam, and MIB-1 labeling index decreased in 24 hours (12%, 11%, 7%, respectively) but increased in 48 hours (10%, 20%, 21%, respectively). Ultrastructurally, cellular enlargement seemed to depend on vacuolation, swelling of mitochondria, and increase of cellular organelles, such as the cytoskeleton and secondary lysosome. We could not observe apoptotic bodies in the CGNH-89 cells under any conditions. We conclude that carbon-ion irradiation induced cell death and senescence in a glioblastoma cell line with mutant TP53. Our results indicated that the increase of large cells with enlarged and bizarre nuclei, swollen mitochondria, and secondary lysosome occurred in glioblastoma cells after carbon-beam exposure.学位記番号:医博甲1096, 学位の種類:博士(医), 学位授与年月日:平成20年3月25

    Immobilization of live Caenorhabditis elegans individuals using an ultra-thin polydimethylsiloxane microfluidic chip with water retention

    No full text
    Radiation is widely used for biological applications and for ion-beam breeding, and among these methods, microbeam irradiation represents a powerful means of identifying radiosensitive sites in living organisms. This paper describes a series of on-chip immobilization methods developed for the targeted microbeam irradiation of live individuals of Caenorhabditis elegans. Notably, the treatment of the polydimethylsiloxane (PDMS) microfluidic chips that we previously developed to immobilize C. elegans individuals without the need for anesthesia is explained in detail. This chip, referred to as a worm sheet, is resilient to allow the microfluidic channels to be expanded, and the elasticity allows animals to be enveloped gently. Also, owing to the self-adsorption capacity of the PDMS, animals can be sealed in the channels by covering the surface of the worm sheet with a thin cover film, in which animals are not pushed into the channels for enclosure. By turning the cover film over, we can easily collect the animals. Furthermore, the worm sheet shows water retention and allows C. elegans individuals to be subjected to microscopic observation for long periods under live conditions. In addition, the sheet is only 300 µm thick, allowing heavy ions such as carbon ions to pass through the sheet enclosing the animals, thus allowing the ion particles to be detected and the applied radiation dose to be measured accurately. Because selection of the cover films used for enclosing the animals is very important for successful long-term immobilization, we conducted the selection of the suitable cover films and showed a recommended one among some films. As an application example of the chip, we introduced imaging observation of muscular activities of animals enclosing the microfluidic channel of the worm sheet, as well as the microbeam irradiation. These examples indicate that the worm sheets have greatly expanded the possibilities for biological experiments

    Heavy-Ion Microbeam System at JAEA-Takasaki for Microbeam Biology

    No full text
    Research concerning cellular responses to low dose irradiation, radiation-induced bystander effects, and the biological track structure of charged particles has recently received particular attention in the field of radiation biology. Target irradiation employing a microbeam represents a useful means of advancing this research by obviating some of the disadvantages associated with the conventional irradiation strategies. The heavy-ion microbeam system at JAEA-Takasaki, which was planned in 1987 and started in the early 1990\u27s, can provide target irradiation of heavy charged particles to biological material at atmospheric pressure using a minimum beam size 5 um in diameter. A variety of biological material has been irradiated using this microbeam system including cultured mammalian and higher plant cells, isolated fibers of mouse skeletal muscle, silkworm (Bombyx mori) embryos and larvae, Arabidopsis thaliana roots, and the nematode Caenorhabditis elegans. The system can be applied to the investigation of mechanisms within biological organisms not only in the context of radiation biology, but also in the fields of general biology such as physiology, developmental biology and neurobiology, and should help to establish and contribute to the field of "microbeam biology"

    Involvement of gap junctional intercellular communication in the bystander effect induced by broad-beam or microbeam heavy ions

    No full text
    Most of the reported bystander responses were studied by using low dose irradiation of c-rays and light ions such as alpha-particles. In this study, primary human fibroblasts AG1522 in confluent cultures were irradiated with either broad-beam of 100 keV/lm 12C or microbeams of 380 keV/lm 20Ne and 1260 keV/lm 40Ar. When cells were irradiated with 12C ions, the induction of micronucleus (MN) had a low-dose sensitive effect, i.e. a lower dose of irradiation gave a higher yield of MN per cell-traversal. This phenomenon was further reinforced by using a microbeam to irradiate a fraction of cells within a population. Even when only a single cell was targeted with one particle of 40Ar or 20Ne, the MN yield was increased to 1.4-fold of the non-irradiated control. When the number of microbeam targeted cells increased, the MN yield per targeted-cell decreased drastically. In addition, the bystander MN induction did not vary significantly with the number and the linear energy transfer (LET) of microbeam particles. When the culture was treated with PMA, an inhibitor of gap junctional intercellular communication (GJIC), MN induction was decreased for both microbeam and broad-beam irradiations even at high-doses where all cells were hit. The present findings indicate that a GJIC-mediated signaling amplification mechanism was involved in the high-LET heavy ion irradiation induced bystander effect. Moreover, at high-doses of radiation, the bystander signals could perform a complex interaction with direct irradiation

    Heavy-Ion Microbeams—Development and Applications in Biological Studies

    No full text
    corecore