126 research outputs found

    Hypogammaglobulinemia in BLT Humanized Mice – An Animal Model of Primary Antibody Deficiency

    Get PDF
    Primary antibody deficiencies present clinically as reduced or absent plasma antibodies without another identified disorder that could explain the low immunoglobulin levels. Bone marrow-liver-thymus (BLT) humanized mice also exhibit primary antibody deficiency or hypogammaglobulinemia. Comprehensive characterization of B cell development and differentiation in BLT mice revealed other key parallels with primary immunodeficiency patients. We found that B cell ontogeny was normal in the bone marrow of BLT mice but observed an absence of switched memory B cells in the periphery. PC-KLH immunizations led to the presence of switched memory B cells in immunized BLT mice although plasma cells producing PCor KLH- specific IgG were not detected in tissues. Overall, we have identified the following parallels between the humoral immune systems of primary antibody deficiency patients and those in BLT mice that make this in vivo model a robust and translational experimental platform for gaining a greater understanding of this heterogeneous array of humoral immunodeficiency disorders in humans: (i) hypogammaglobulinemia; (ii) normal B cell ontogeny in bone marrow; and (iii) poor antigen-specific IgG response to immunization. Furthermore, the development of strategies to overcome these humoral immune aberrations in BLT mice may in turn provide insights into the pathogenesis of some primary antibody deficiency patients which could lead to novel clinical interventions for improved humoral immune function

    Immunoregulatory effects triggered by immunobiotic Lactobacillus jensenii TL2937 strain involve efficient phagocytosis in porcine antigen presenting cells

    Get PDF
    Background: Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer?s patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. Objective: In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs. Results: studies showed a high ability of porcine CD172a+ PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs. Conclusions: Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.Fil: Tsukida, Kohichiro. Tohoku University; JapónFil: Takahashi, Takuya. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Kanmani, Paulraj. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Ohwada, Shuichi. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural & Veterinary Division; JapónFil: Makino, Seiya. Meiji Co., Ltd. Division of Research and Development; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Division of Research and Development; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; Japó

    Isolation and immunocharacterization of lactobacillus salivarius from the intestine of wakame-fed pigs to develop novel "Immunosynbiotics"

    Get PDF
    Emerging threats of antimicrobial resistance necessitate the exploration of effective alternatives for healthy livestock growth strategies. ?Immunosynbiotics?, a combination of immunoregulatory probiotics and prebiotics with synergistic effects when used together in feed, would be one of the most promising candidates. Lactobacilli are normal residents of the gastrointestinal tract of pigs, and many of them are able to exert beneficial immunoregulatory properties. On the other hand, wakame (Undaria pinnafida), an edible seaweed, has the potential to be used as an immunoregulatory prebiotic when added to livestock feed. Therefore, in order to develop a novel immunosynbiotic, we isolated and characterized immunoregulatory lactobacilli with the ability to utilize wakame. Following a month-long in vivo wakame feeding trial in 8-week-old Landrace pigs (n = 6), sections of intestinal mucous membrane were processed for bacteriological culture and followed by identification of pure colonies by 16S rRNA sequence. Each isolate was characterized in vitro in terms of their ability to assimilate to the wakame and to differentially modulate the expression of interleukin-6 (IL-6) and interferon beta (IFN-β) in the porcine intestinal epithelial (PIE) cells triggered by Toll-like receptor (TLR)-4 and TLR-3 activation, respectively. We demonstrated that feeding wakame to pigs significantly increased the lactobacilli population in the small intestine. We established a wakame-component adjusted culture media that allowed the isolation and characterization of a total of 128 Lactobacilli salivarius colonies from the gut of wakame-fed pigs. Interestingly, several L. salivarius isolates showed both high wakame assimilation ability and immunomodulatory capacities. Among the wakame assimilating isolates, L. salivarius FFIG71 showed a significantly higher capacity to upregulate the IL-6 expression, and L. salivarius FFIG131 showed significantly higher capacity to upregulate the IFN-β expression; these could be used as immunobiotic strains in combination with wakame for the development of novel immunologically active feeds for pigs.Fil: Masumizu, Yuki. Tohoku University; JapónFil: Zhou, Binghui. Tohoku University; JapónFil: Humayun Kober, AKM. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University; BangladeshFil: Islam, M. Aminul. Agricultural University; Bangladesh. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Department Of Food Agriculture, Miyagi University; JapónFil: Albarracín, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; Japón. Universidad Nacional de Tucumán; ArgentinaFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Suzuki, Keiichi. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    Nef functions in BLT mice to enhance HIV-1 replication and deplete CD4+CD8+ thymocytes

    Get PDF
    Background: The outcome of untreated HIV-1 infection is progression to AIDS and death in nearly all cases. Some important exceptions are the small number of patients infected with HIV-1 deleted for the accessory gene, nef. With these infections, disease progression is entirely suppressed or greatly delayed. Whether Nef is critical for high levels of replication or is directly cytotoxic remains controversial. The major problem in determining the role of Nef in HIV/AIDS has been the lack of tractable in vivo models where Nef’s complex pathogenic phenotype can be recapitulated. Results: Intravenous inoculation (3000 to 600,000 TCIU) of BLT humanized mice with HIV-1LAI reproducibly establishes a systemic infection. HIV-1LAI (LAI) replicates to high levels (peak viral load in blood 8,200,000 ± 1,800,000 copies of viral RNA/ml, range 3,600,000 to 20,400,000; n = 9) and exhaustively depletes CD4+ T cells in blood and tissues. CD4+CD8+ thymocytes were also efficiently depleted but CD4+CD8- thymocytes were partially resistant to cell killing by LAI. Infection with a nef-deleted LAI (LAINefdd) gave lower peak viral loads (1,220,000 ± 330,000, range 27,000 to 4,240,000; n = 17). For fourteen of seventeen LAINefdd-infected mice, there was little to no loss of either CD4+ T cells or thymocytes. Both LAIand LAINefdd-infected mice had about 8% of total peripheral blood CD8+ T cells that were CD38+HLA-DR+ compared \u3c1% for uninfected mice. Three exceptional LAINefdd-infected mice that lost CD4+ T cells received 600,000 TCIU. All three exhibited peak viral loads over 3,000,000 copies of LAINefdd RNA/ml. Over an extended time course, substantial systemic CD4+ T cell loss was observed for the three mice, but there was no loss of CD4+CD8+ or CD4+CD8- thymocytes. Conclusion: We conclude Nef is necessary for elevated viral replication and as a result indirectly contributes to CD4+ T cell killing. Further, Nef was not necessary for the activation of peripheral blood CD8+ T cells following infection. However, CD4+CD8+ thymocyte killing was dependent on Nef even in cases of elevated LAINefdd replication and T cell loss. This depletion of thymic T cell precursors may be a significant factor in the elevated pathogenicity of CXCR4 trophic HIV-1

    Hypogammaglobulinemia in BLT Humanized Mice – An Animal Model of Primary Antibody Deficiency

    Get PDF
    Primary antibody deficiencies present clinically as reduced or absent plasma antibodies without another identified disorder that could explain the low immunoglobulin levels. Bone marrow-liver-thymus (BLT) humanized mice also exhibit primary antibody deficiency or hypogammaglobulinemia. Comprehensive characterization of B cell development and differentiation in BLT mice revealed other key parallels with primary immunodeficiency patients. We found that B cell ontogeny was normal in the bone marrow of BLT mice but observed an absence of switched memory B cells in the periphery. PC-KLH immunizations led to the presence of switched memory B cells in immunized BLT mice although plasma cells producing PC- or KLH- specific IgG were not detected in tissues. Overall, we have identified the following parallels between the humoral immune systems of primary antibody deficiency patients and those in BLT mice that make this in vivo model a robust and translational experimental platform for gaining a greater understanding of this heterogeneous array of humoral immunodeficiency disorders in humans: (i) hypogammaglobulinemia; (ii) normal B cell ontogeny in bone marrow; and (iii) poor antigen-specific IgG response to immunization. Furthermore, the development of strategies to overcome these humoral immune aberrations in BLT mice may in turn provide insights into the pathogenesis of some primary antibody deficiency patients which could lead to novel clinical interventions for improved humoral immune function

    Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli

    Get PDF
    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host-immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host-immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes (IFN-β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES, and PTGER4), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections.Fil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentina. Tohoku University; JapónFil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Sato, Nana. Tohoku University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Salva, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Alvarez, Gladis Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Modulation of porcine intestinal epitheliocytes immunetranscriptome response by Lactobacillus jensenii TL2937

    Get PDF
    In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE cells). Here, transcriptomic studies using PIE cells were performed considering that this information would be valuable for understanding the mechanisms involved in the protective activity of the immunobiotic strain Lactobacillus jensenii TL2937 against intestinal inflammatory damage in pigs. In addition, those studies would provide criteria for selecting biomarkers for the screening of new immunobiotic strains. We performed microarray analysis to investigate the transcriptomic response of PIE cells to the challenge with heat-stable Enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs) and, the changes induced by L. jensenii TL2937 in that response. The approach allowed us to obtain a global overview of the immune genes involved in the response of PIE cells to heat-stable ETEC PAMPs. We observed that L. jensenii TL2937 differently modulated gene expression in ETEC PAMPs-challenged PIE cells. Microarray and RT-PCR analysis indicated that the most remarkable changes in PIE cells transcriptomic profile after heat-stable ETEC PAMPs challenge were observed in chemokines, adhesion molecules, complement and coagulation cascades factors. In addition, an anti-inflammatory effect triggered by TL2937 strain in PIE cells was clearly demonstrated. The decrease in the expression of chemokines (CCL8, CXCL5, CXCL9, CXCL10, and CXCL11), complement (C1R, C1S, C3, and CFB), and coagulation factors (F3) by L. jensenii TL2937 supports our previous reports on the immunoregulatory effect of this strain. These results provided clues for the better understanding of the mechanism underlying host-immunobiotic interaction in the porcine host. The comprehensive transcriptomic profiles of PIE cells provided by our analyses successfully identified a group of genes, which could be used as prospective biomarkers for the screening and evaluation of new anti-inflammatory immunobiotics for the prevention of inflammatory intestinal disorders in pigs.Fil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Albarracín, Leonardo Miguel. Tohoku University; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Sato, Nana. Tohoku University; JapónFil: Kanmani, Paulraj. Tohoku University; JapónFil: Kober, Humayun A.K.M.. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University. Department of Dairy and Poultry Science; BangladeshFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Makino, Seiya. Meiji Co., Ltd. Food Science Research Labs.; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Food Science Research Labs.; JapónFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural and Veterinary Division; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    A novel M cell–specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses

    Get PDF
    Mucosally ingested and inhaled antigens are taken up by membranous or microfold cells (M cells) in the follicle-associated epithelium of Peyer's patches or nasopharynx-associated lymphoid tissue. We established a novel M cell–specific monoclonal antibody (mAb NKM 16–2-4) as a carrier for M cell–targeted mucosal vaccine. mAb NKM 16–2-4 also reacted with the recently discovered villous M cells, but not with epithelial cells or goblet cells. Oral administration of tetanus toxoid (TT)– or botulinum toxoid (BT)–conjugated NKM 16–2-4, together with the mucosal adjuvant cholera toxin, induced high-level, antigen-specific serum immunoglobulin (Ig) G and mucosal IgA responses. In addition, an oral vaccine formulation of BT-conjugated NKM 16–2-4 induced protective immunity against lethal challenge with botulinum toxin. An epitope analysis of NKM 16–2-4 revealed specificity to an α(1,2)-fucose–containing carbohydrate moiety, and reactivity was enhanced under sialic acid–lacking conditions. This suggests that NKM 16–2-4 distinguishes α(1,2)-fucosylated M cells from goblet cells containing abundant sialic acids neighboring the α(1,2) fucose moiety and from non-α(1,2)-fucosylated epithelial cells. The use of NKM 16–2-4 to target vaccine antigens to the M cell–specific carbohydrate moiety is a new strategy for developing highly effective mucosal vaccines

    Extracellular cyclophilin A possesses chemotaxic activity in cattle

    Get PDF
    International audienceCyclophilin A (CyPA) was originally discovered in bovine thymocytes as a cytosolic binding protein of the immunosuppressive drug cyclosporine A. Recent studies have revealed that in mice and humans, CyPA is secreted from cells in injured or infected tissues and plays a role in recruiting inflammatory cells in those tissues. Here we found that in cattle abundant level of extracellular CyPA was observed in tissues with inflammation. To aid in investigating the role of extracellular CyPA in cattle, we generated recombinant bovine CyPA (rbCyPA) and tested its biological activity as an inflammatory mediator. When bovine peripheral blood cells were treated with rbCyPA in vitro, we observed that rbCyPA reacts with the membranous surface of granulocytes, monocytes and lymphocytes. Chemotaxis analysis showed that the granulocytes migrate toward rbCyPA and the migration is inhibited by pre-treatment with an anti-bovine CyPA antibody. These results indicate that, as for mice and humans, extracellular CyPA possesses chemotactic activity to recruit inflammatory cells (e.g., granulocytes) in cattle, and could thus be a potential therapeutic target for the treatment of inflammation
    corecore