224 research outputs found

    Serotonin Transporter Gene Polymorphism Modulates Activity and Connectivity within an Emotional Arousal Network of Healthy Men during an Aversive Visceral Stimulus.

    Get PDF
    Background and aimsThe 5-hydroxytryptamine transporter gene-linked polymorphic region (5-HTTLPR) has been linked to increased stress responsiveness and negative emotional states. During fearful face recognition individuals with the s allele of 5-HTTLPR show greater amygdala activation. We aimed to test the hypothesis that the 5-HTTLPR polymorphism differentially affects connectivity within brain networks during an aversive visceral stimulus.MethodsTwenty-three healthy male subjects were enrolled. DNA was extracted from the peripheral blood. The genotype of 5-HTTLPR was determined using polymerase chain reaction. Subjects with the s/s genotype (n = 13) were compared to those with the l allele (genotypes l/s, l/l, n = 10). Controlled rectal distension from 0 to 40 mmHg was delivered in random order using a barostat. Radioactive H2[15-O] saline was injected at time of distension followed by positron emission tomography (PET). Changes in regional cerebral blood flow (rCBF) were analyzed using partial least squares (PLS) and structural equation modeling (SEM).ResultsDuring baseline, subjects with s/s genotype demonstrated a significantly increased negative influence of pregenual ACC (pACC) on amygdala activity compared to l-carriers. During inflation, subjects with s/s genotype demonstrated a significantly greater positive influence of hippocampus on amygdala activity compared to l-carriers.ConclusionIn male Japanese subjects, individuals with s/s genotype show alterations in the connectivity of brain regions involved in stress responsiveness and emotion regulation during aversive visceral stimuli compared to those with l carriers

    Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice

    Get PDF
    Although nutrients, including amino acids and their metabolites such as serotonin (5-HT), are strong modulators of anxiety-related behavior, the metabolic pathway(s) responsible for this physiological modulation is not fully understood. Regarding tryptophan (Trp), the initial rate-limiting enzymes for the kynurenine pathway of tryptophan metabolism are tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Here, we generated mice deficient for tdo (Tdo-/-). Compared with wild-type littermates, Tdo-/- mice showed increased plasma levels of Trp and its metabolites 5-hydroxyindoleacetic acid (5-HIAA) and kynurenine, as well as increased levels of Trp, 5-HT and 5-HIAA in the hippocampus and midbrain. These mice also showed anxiolytic modulation in the elevated plus maze and open field tests, and increased adult neurogenesis, as evidenced by double staining of BrdU and neural progenitor/neuronal markers. These findings demonstrate a direct molecular link between Trp metabolism and neurogenesis and anxiety-related behavior under physiological conditions

    本邦で分離されたカルバペネマーゼ産生肺炎桿菌の分子遺伝学的解析

    Get PDF
    Carbapenemase-producing Enterobacteriaceae represent a serious public health threat worldwide. Carbapenemase genes, harbored on a transferable plasmid, have been isolated globally with distinct geographical features. Klebsiella pneumoniae, included in Enterobacteriaceae, also produces carbapenemase and often shows hypervirulence. Overlapping carbapenem resistance and hypervirulence in K. pneumoniae have been reported, but such strains have not yet been found in Japan. Here, we screened 104 carbapenemase-producing K. pneumoniae isolates collected from 37 hospitals and outpatient clinics in Japan between September 2014 and July 2015. PCR and DNA sequencing demonstrated IMP-1 in 21 isolates and IMP-6 in 83 isolates, 77 of which coharbored CTX-M-2. Most of the isolates showed low MICs toward imipenem and meropenem but high MICs toward penicillin and cephalosporins. Conjugation experiments with an Escherichia coli J53 recipient showed that most of the plasmids in IMP-6 producers were transferable, whereas only one-half of the plasmids in IMP-1 producers were transferable. PCR-based replicon typing and multiplex PCR identified five isolates belonging to the CG258 non-tonB79 cluster and no isolate belonging to the CG258-tonB79 cluster or sequence type 307 (ST307). Four K1-ST23 isolates, 10 K2-ST65 isolates, and 7 K2-ST86 isolates were detected that harbored virulence genes. The resistance genes in 85 isolates were transferable, but the virulence genes were not transferred. These results demonstrate the acquisition of IMP-type carbapenemase genes and CTX-M-type genes among hypervirulence isolates in Japan, warranting further attention and countermeasures. In this study, we have determined the molecular characteristics and epidemiology of IMP-6 producers that coharbored various CTX-M genes in Japan.IMPORTANCE Carbapenems serve as a last resort for the clinical treatment of multidrug-resistant infections. Therefore, the rapid spread of carbapenemase-producing strains represents a serious public health threat, further limiting antibiotic choices. The current findings of hypervirulent carbapenemase-producing Klebsiella pneumoniae clinical isolates in Japan demonstrate the potential broad spread and transfer of these genes, necessitating close surveillance.博士(医学)・乙第1509号・令和3年3月15日Copyright © 2020 Yonekawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license(https://creativecommons.org/licenses/by/4.0/)

    TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP

    Get PDF
    Transient receptor potential V3 (TRPV3) and TRPV4 are heat-activated cation channels expressed in keratinocytes. It has been proposed that heat-activation of TRPV3 and/or TRPV4 in the skin may release diffusible molecules which would then activate termini of neighboring dorsal root ganglion (DRG) neurons. Here we show that adenosine triphosphate (ATP) is such a candidate molecule released from keratinocytes upon heating in the co-culture systems. Using TRPV1-deficient DRG neurons, we found that increase in cytosolic Ca(2+)-concentration in DRG neurons upon heating was observed only when neurons were co-cultured with keratinocytes, and this increase was blocked by P2 purinoreceptor antagonists, PPADS and suramin. In a co-culture of keratinocytes with HEK293 cells (transfected with P2X(2) cDNA to serve as a bio-sensor), we observed that heat-activated keratinocytes secretes ATP, and that ATP release is compromised in keratinocytes from TRPV3-deficient mice. This study provides evidence that ATP is a messenger molecule for mainly TRPV3-mediated thermotransduction in skin. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00424-009-0703-x) contains supplementary material, which is available to authorized users

    市販茶系飲料の抗変異原性と抗変異原性成分の定量

    Get PDF
    Sep-pak C18 extracts of nineteen commercially available tea drinks were examined for inhibitory effects on the mutagenicity for three nitroarenes using umu-test. Antimutagenic activity of tea drinks increased in the following order: blend tea drinks < green tea drinks < oolong tea drinks. Furthermore, anti-mutagens (EGC, C, EGCG, EC, ECG, ascorbic acid, gallic acid and caffeine) concentrations of nineteen commercially available tea drinks were determined by HPLC combined with UV detector and electro-chemical detector. Higher concentrations of EGCG and EGC were detected in green tea drinks than oolong tea drinks. Total mean concentration of five catechins in oolong tea drinks was less than half of one in green tea drinks. These results suggest that there is no correlation between antimutagenicity for nitroarenes and catechin concentrations in commercially available tea drinks
    corecore