4 research outputs found

    Additional volumetric modulated arc therapy to vertebral metastases abutting the previously irradiated site

    No full text
    Introduction: Lung cancer frequently causes metastases to the spine, especially to the thoracic vertebrae, which sometimes compress the spinal cord and induce irreversible palsy. Many patients suffering from metastatic spinal tumors need to undergo repetitive radiotherapy. In such situations, intensity-modulated radiotherapy including volumetric modulated arc therapy can reduce the dose delivered to the spinal cord at the junction.&nbsp;Case Report: The authors describe a case of thoracic vertebral metastases from lung cancer treated with two courses of radiotherapy. In the second course, volumetric modulated arc therapy was adopted and a columnar-shaped planning target volume with a concave portion was configured.&nbsp;Conclusion: The authors propose an approach aimed at realizing both junctional safety and the conformality of the spinal column, which may be an option for repetitive irradiation to heterochronic spinal metastases.</p

    Optimal Clinical Target Volume of Radiotherapy Based on Microscopic Extension around the Primary Gross Tumor in Non-Small-Cell Lung Cancer: A Systematic Review

    No full text
    A crucial issue in radical radiation therapy for non-small-cell lung cancer is how to define the clinical target volume (CTV). Although the scope of microscopic extension (ME) and microscopic proximal bronchial extension (PBE) from a primary tumor should be considered when defining the CTV, there has been limited research on ME and PBE. Therefore, we conducted this systematic review. The PubMed, ICHUSHI (Japanese database), and Cochrane Library databases were searched, and 816 articles were initially retrieved. After primary and secondary screenings, eight articles were ultimately selected. The results of this systematic review suggest the importance of a 0 mm margin in stereotactic radiotherapy for early-stage cancer and a 5–8 mm margin in curative irradiation for locally advanced cancer. Regarding PBE, this review yielded the conclusion that it is appropriate to consider the addition of an approximately 15 mm margin from the bronchial vasculature. Although there were few articles with a high level of evidence, this systematic review enabled us to collate results from previous studies and to provide recommendations, to some extent, regarding the CTV margin in the current clinical environment, where high-precision radiation therapy, such as image-guided radiotherapy and intensity-modulated radiotherapy, is predominant
    corecore