24 research outputs found

    Regeneration of the periodontium for preservation of the damaged tooth

    No full text
    The population of the world grows every year, and life expectancy tends to increase. Thus, longterm preservation of teeth in aged individuals is an urgent issue. The main causes of tooth loss are well known to be periodontitis, caries, fractures, and orthodontic conditions. Although implant placement is a widely accepted treatment for tooth loss, most patients desire to preserve their own teeth. Many clinicians and researchers are therefore challenged to treat and preserve teeth that are irreversibly affected by deep caries, periodontitis, fractures, and trauma. Tissue engineering techniques are beneficial in addressing this issue; stem cells, signal molecules, and scaffolds are the main elements of such techniques. In this review, we describe these three elements with respect to their validation for regeneration of the periodontium and focus particularly on the potency of diverse scaffolds. In addition, we provide a short overview of the ongoing studies of 4- methacryloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butyl-borane resin including calcium chloride or hydroxyapatite for periodontium regeneration

    Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy

    No full text
    Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine

    Current Application of iPS Cells in the Dental Tissue Regeneration

    No full text
    When teeth and periodontal tissues are severely damaged by severe caries, trauma, and periodontal disease, such cases may be subject to tooth extraction. As tooth loss leads to the deterioration of quality of life, the development of regenerative medicine for tooth and periodontal tissue is desired. Induced pluripotent stem cells (iPS cells) are promising cell resources for dental tissue regeneration because they offer high self-renewal and pluripotency, along with fewer ethical issues than embryonic stem cells. As iPS cells retain the epigenetic memory of donor cells, they have been established from various dental tissues for dental tissue regeneration. This review describes the regeneration of dental tissue using iPS cells. It is important to mimic the process of tooth development in dental tissue regeneration using iPS cells. Although iPS cells had safety issues in clinical applications, they have been overcome in recent years. Dental tissue regeneration using iPS cells has not yet been established, but it is expected in the future

    The Roles of Angiotensin II in Stretched Periodontal Ligament Cells

    No full text
    The loading caused by occlusion and mastication plays an important role in maintaining periodontal ligament (PDL) tissues. We hypothesized that a loading magnitude would be involved in the production of biological factors that function in the maintenance of PDL tissues. Here, we identified up-regulated gene expressions of transforming growth factor-β1 (TGF-β1), alkaline phosphatase (ALP), and angiotensinogen in human PDL fibroblastic cells (HPLFs) that were exposed to 8% stretch loading. Immunolocalization of angiotensin I/II (Ang I/II), which was converted from angiotensinogen, was detected in rat PDL tissues. HPLFs that were stimulated by Ang II also increased their gene expressions of TGF-β1 and ALP. Furthermore, the antagonist for Ang II type 2 receptor, rather than for type 1, significantly inhibited gene expressions induced by the stretch loading. Analysis of these data suggests that Ang II mediates the loading signal in stretched HPLFs to induce expressions of TGF-β1 and ALP
    corecore