14 research outputs found
Взаємний зв'язок властивостей і структури плівкових чутливих елементів сенсорів магнітного поля
Дисертацію присвячено комплексним експериментальним дослідженням особливостей структурно-фазового стану та магнітних і магніторезистивних властивостей багатошарових плівкових систем на основі Co і Cu, Co і Cr, Fe і Cr та Fe і Cu як можливих матеріалів чутливих елементів сенсорів різного призначення. У роботі встановлено взаємозв’язок між товщиною магнітних шарів і немагнітних прошарків, орієнтацією зразка у зовнішньому магнітному полі, температурою термообробки та магнітними, магніторезистивними і магнітооптичними властивостями багатошарових плівкових систем із можливим спін-залежним розсіюванням електронів.
Визначені величини магнітоопору, коерцитивної сили, коефіцієнта прямокутності й чутливості плівкової системи до магнітного поля досліджуваних плівкових систем як приладових структур для формування первинних перетворювачів. Установлена кореляція між структурно-фазовим станом, магнітними та магнітооптичними властивостями тришарових плівкових систем з різним типом розчинності компонент як функціональних елементів датчиків.
Запропонована схематична конструкція АМР-датчика магнітного поля для тришарових плівкових систем із спін-залежним розсіюванням електронів. У результаті проведених досліджень впливу геометрії вимірювання, температури термообробки та загальної концентрації феромагнітної компоненти в системі на магнітні й магніторезистивні властивості визначені можливі області застосування плівкових систем на основі Co і Cu або Cr та Fe і Cu або Cr.Диссертация посвящена комплексным экспериментальным исследованиям особенностей структурно-фазового состояния, магнитных магниторезистивных свойств многослойных пленочных систем на основе Co и Cu, Co и Cr, Fe и Cr и Fe и Cu в качестве возможных материалов чувствительных элементов сенсоров различного назначения. В работе установлена взаимосвязь между толщиной магнитных слоев и немагнитных прослоек, ориентацией образца во внешнем магнитном поле, температурой термообработки и магнитными, магниторезистивными и магнитооптическими свойствами многослойных пленочных систем с возможным спин-зависимым рассеянием электронов.
При исследовании магнитных свойств пленочных систем на основе Fe, Co, Cu или Cr получено, что для пленочных систем на основе Fe и Cu в форме кривых гистерезиса наблюдается определенный перегиб, свидетельствующий о послойном перемагничивании слоев Fe, в то время как для систем на основе Fe и Cr петля гистерезиса имеет форму, подобную однослойным пленкам Fe, что говорит о преобладании ферромагнитной связи в системе. В пленочных структурах на основе Co и Cr или Cu магнитные свойства системы главным образом определяются состоянием слоев Со, поэтому форма кривых гистерезиса для обеих систем схожа с формой кривых для однослойных пленок Со, а небольшие значения коэрцитивной силы свидетельствуют о реализации ферромагнитной связи в системе.
Все четыре системы характеризуются достаточно высоким значением коэффициента прямоугольности, которое при смене ориентации образца от 0 до 90° несколько уменьшается для систем Fe/Cu/Fe и Fe/Cr/Fe и, наоборот, растет в системах на основе Co и Cr.
Определены величины магнитосопротивления, коэрцитивной силы, коэффициента прямоугольности и чувствительности пленочной системы к магнитному полю исследуемых пленочных систем как приборных структур для формирования первичных преобразователей. Установлена корреляция между структурно-фазовым состоянием, магнитными и магнитооптическими свойствами трехслойных пленочных систем с разным типом растворимости компонент в качестве функциональных элементов датчиков. Предложена схематическая конструкция АМР-датчика магнитного поля для трехслойных пленочных систем со спин-зависимым рассеянием электронов. В результате проведенных исследований влияния геометрии измерения, температуры термообработки и общей концентрации ферромагнитной компоненты в системе на магниторезистивные свойства определены возможные области применения пленочных систем на основе Co и Cu или Cr и Fe и Cu или Cr.The thesіs іs dedіcаted to the complex experіmentаl reseаrch between the structurаl-phаse stаte, magnetic and magnetoresistance propertіes of multіlаyer fіlm systems bаsed on the Co аnd Cu, Co аnd Cr, Fe аnd Cr, аnd Fe аnd Cu, аs the potential mаterіаls for sensіtіve elements of sensors for dіfferent purposes. Іn thіs thesis wаs found the correlаtіon between the thіckness of the mаgnetіc аnd nonmаgnetіc lаyers, the orіentаtіon of the sаmple іn аn externаl mаgnetіc fіeld, temperаture of heаt treаtment аnd mаgnetіc, mаgnetoresіstіve аnd mаgneto-optіcаl propertіes іn multіlаyer fіlm systems wіth possіble spіn-dependent scаtterіng of electrons.
The vаlues of mаgnetoresіstаnce, coercіvіty, squаreness fаctor аnd sensіtіvіty of fіlm system to a mаgnetіc fіeld in the studіed fіlm systems аs devіce structures for the formаtіon of prіmаry converters were defined. The correlаtіon between the structurаl-phаse stаte, mаgnetіc аnd mаgneto-optіcаl propertіes of three-lаyer fіlm systems wіth dіfferent types of component solubіlіty аs functіonаl elements sensors was established.
The schemаtіc sturucture of АMR sensor for three-lаyer fіlm systems wіth spіn-dependent scаtterіng of electrons was purposed. The possіble аreаs of аpplіcаtіons wаs іdentіfіed on the bаsіs of studіes of the effect of geometry meаsurement temperаture heаt treаtment аnd the totаl concentrаtіon of ferromаgnetіc components іn the system on the magnetic and mаgnetoresіstіve propertіes of fіlm-systems bаsed on Co аnd Cu, or Cr аnd Fe, аnd Cu or Cr
Systematic Heterodinuclear Complexes with MM′(μ-meppp) Centers That Tune the Properties of a Nesting Hydride (M = Ni, Pd, Pt; M′ = Rh, Ir; H<sub>2</sub>meppp = <i>meso</i>-1,3-Bis[(mercaptoethyl)phenylphosphino]propane)
Mononuclear complexes with a P<sub>2</sub>S<sub>2</sub> ligand,
[M(meppp)] (M = Ni (<b>1a</b>), Pd (<b>1b</b>), Pt (<b>1c</b>); H<sub>2</sub>meppp = <i>meso</i>-1,3-bis[(mercaptoethyl)phenylphosphino]propane),
were treated with [M′Cp*Cl<sub>2</sub>]<sub>2</sub> or [M′Cp*(NO<sub>3</sub>)<sub>2</sub>] (Cp* = η<sup>5</sup>-pentamethylcyclopentadienyl)
to afford a series of bisthiolate-bridged M<sup>II</sup>M′<sup>III</sup> heterodinuclear complexes, [M(μ-meppp)M′Cp*X]X′
(M = Ni, Pd, Pt; M′ = Rh, Ir; X = Cl, NO<sub>3</sub>; X′
= Cl, PF<sub>6</sub>, NO<sub>3</sub>). The nitrate complexes [M(μ-meppp)-M′Cp*(NO<sub>3</sub>)]NO<sub>3</sub> (M′ = Rh ([<b>4a</b>–<b>c</b>]NO<sub>3</sub>), Ir ([<b>5a</b>–<b>c</b>]NO<sub>3</sub>); M = Ni (<b>a</b>), Pd (<b>b</b>), Pt
(<b>c</b>)) further reacted with sodium formate in water or
methanol to be transformed into bisthiolate- and hydride-bridged complexes,
[M(μ-meppp)(μ-H)M′Cp*]NO<sub>3</sub> (M′
= Rh ([<b>6a</b>–<b>c</b>]NO<sub>3</sub>), Ir ([<b>8a</b>–<b>c</b>]NO<sub>3</sub>); M = Ni (<b>a</b>), Pd (<b>b</b>), Pt (<b>c</b>)). Complexes [<b>6a</b>]NO<sub>3</sub> (M = Ni, M′ = Rh) and [<b>8a</b>]NO<sub>3</sub> (M = Ni, M′ = Ir) were characterized by X-ray analyses
to reveal that a hydride is stabilized in a semibridging mode on the
heterometal centers. In the Pd<sup>II</sup>Rh<sup>III</sup> ([<b>6b</b>]NO<sub>3</sub>) and Pt<sup>II</sup>Rh<sup>III</sup> ([<b>6c</b>]NO<sub>3</sub>) complexes, the hydrides were extremely
unstable and were likely to undergo an unusual metal-to-Cp* ring hydrogen
transfer, resulting in η<sup>4</sup>-C<sub>5</sub>Me<sub>5</sub>H M<sup>II</sup>Rh<sup>I</sup> complexes, [M(μ-meppp)Rh(η<sup>4</sup>-C<sub>5</sub>Me<sub>5</sub>H)]NO<sub>3</sub> (M = Pd ([<b>7b</b>]NO<sub>3</sub>), Pt ([<b>7c</b>]NO<sub>3</sub>)).
The property of the hydride was drastically switched by varying the
anchoring metal ions of the M′ site (Rh, Ir); that of [<b>6a</b>]NO<sub>3</sub> (M′ = Rh) is not protic and decomposes
in water below pH 4, while those of [<b>8a</b>–<b>c</b>]NO<sub>3</sub> (M′ = Ir) are protic, subject to H<sup>+</sup>/D<sup>+</sup> exchange reactions, and stable below pH 4.
[<b>6a</b>]NO<sub>3</sub> reacted with phenylacetylene to give
[Ni(μ-meppp)RhCp*(CCPh)]NO<sub>3</sub> ([<b>10a</b>]NO<sub>3</sub>), which is in contrast with the inertness of the
Ni<sup>II</sup>Ir<sup>III</sup> hydride complex [<b>8a</b>]NO<sub>3</sub>. The reaction is assumed to involve an alkenyl complex, [Ni(μ-meppp)RhCp*(CHCHPh)]NO<sub>3</sub> (<b>9a</b>), formed through an insertion of phenylacetylene
into the metal–hydride bond. Analogous M<sup>II</sup>Rh<sup>III</sup> alkynyl complexes, [M(μ-meppp)RhCp*(CCPh)]NO<sub>3</sub> (M = Pd ([<b>10b</b>]NO<sub>3</sub>), Pt ([<b>10c</b>]NO<sub>3</sub>)), were synthesized by treating [<b>4b</b>,<b>c</b>]NO<sub>3</sub> with phenylacetylene in basic media, and
the structural differences among [<b>10a</b>–<b>c</b>]NO<sub>3</sub> were discussed. These results interestingly demonstrated
that the structures, properties, and reactivities of the nesting hydride
on the {MM′(μ-meppp)} cores were tuned by varying metal
ions of the M and M′ sites
Configurational Isomerization of Dinuclear Iridium and Rhodium Complexes with a Series of NPPN Ligands, 2‑PyCH<sub>2</sub>(Ph)P(CH<sub>2</sub>)<sub><i>n</i></sub>P(Ph)CH<sub>2</sub>‑2-Py (Py = Pyridyl, <i>n</i> = 2–4)
New
heterodonor NPPN tetradentate ligands, 2-PyCH<sub>2</sub>(Ph)P(CH<sub>2</sub>)<sub><i>n</i></sub>P(Ph)CH<sub>2</sub>-2-Py (<i>meso</i>- and <i>rac</i>-L<sup><i>n</i></sup>; <i>n</i> = 2–4, Py = pyridyl), were prepared and
reacted with [Cp*MCl<sub>2</sub>]<sub>2</sub> (M = Ir, Rh; Cp* is
pentamethylcyclopentadienyl) in the presence of NH<sub>4</sub>BF<sub>4</sub> to afford a series of dinuclear complexes [(Cp*MCl)<sub>2</sub>(<i>meso</i>-L<sup><i>n</i></sup>)](BF<sub>4</sub>)<sub>2</sub> (M = Ir, <i>n</i> = 2 (<b>2a</b>),
3 (<b>3a</b>), 4 (<b>4a</b>); M = Rh, <i>n</i> = 2 (<b>2c</b>), 3 (<b>3c</b>), 4 (<b>4c</b>))
and [(Cp*MCl)<sub>2</sub>(<i>rac</i>-L<sup><i>n</i></sup>)](BF<sub>4</sub>)<sub>2</sub> (M = Ir, <i>n</i> =
2 (<b>2b</b>), 3 (<b>3b</b>), 4 (<b>4b</b>); M =
Rh, <i>n</i> = 2 (<b>2d</b>), 3 (<b>3d</b>),
4 (<b>4d</b>)), which were characterized by IR, <sup>1</sup>H and <sup>31</sup>P{<sup>1</sup>H} NMR, and ESI mass spectroscopic
techniques and X-ray crystallography. The configurations around the
two metal centers were controlled by the configuration of the coordinated
P atoms so as to avoid repulsive interaction between the phenyl group
on P and the chloride ligand, resulting in the formation of stereospecific
isomers; a <i>meso</i> configuration of the metal centers
is induced from <i>meso</i>-L<sup><i>n</i></sup> (abbreviated as <i>meso</i>-P<sub>2</sub>/<i>meso</i>-M<sub>2</sub>), and in contrast, a <i>rac</i> configuration
is induced from <i>rac</i>-L<sup><i>n</i></sup> (<i>rac</i>-P<sub>2</sub>/<i>rac</i>-M<sub>2</sub>). Furthermore, inversion of metal centers for the Ir<sub>2</sub> complexes occurred in DMSO at higher temperatures (60–100
°C), generating equilibrium mixtures of minor diastereomers (<i>meso</i>-P<sub>2</sub>/<i>rac</i>-M<sub>2</sub> or <i>rac</i>-P<sub>2</sub>/<i>meso</i>-M<sub>2</sub>) in
low ratios together with the major isomers (<i>meso</i>-P<sub>2</sub>/<i>meso</i>-M<sub>2</sub> or <i>rac</i>-P<sub>2</sub>/<i>rac</i>-M<sub>2</sub>). The equilibrium
constants, <i>K</i> = [minor isomer]/[major isomer], varied
appreciably depending on the lengths of the methylene chains as well
as configurations of the NPPN ligands; the overall propensity for
the <i>K</i> values was observed to be L<sup>2</sup> <
L<sup>3</sup> < L<sup>4</sup> and <i>meso</i>-L<sup><i>n</i></sup> < <i>rac</i>-L<sup><i>n</i></sup>, while <i>rac</i>-L<sup>3</sup>, <i>rac</i>-L<sup>4</sup>, and <i>meso</i>-L<sup>4</sup> showed almost
identical equilibrium constants, presumably resulting from no steric
influence between the two metal centers
Cyclic Trinuclear Rh<sub>2</sub>M Complexes (M = Rh, Pt, Pd, Ni) Supported by <i>meso</i>-1,3-Bis[(diphenylphosphinomethyl)phenylphosphino]propane
Reaction of [MCl<sub>2</sub>(cod)] (M = Pd, Pt) with
a tetraphosphine, <i>meso</i>-1,3-bis[(diphenylphosphinomethyl)phenylphosphino]propane
(dpmppp), afforded the mononuclear complexes [MCl<sub>2</sub>(dpmppp)]
(M = Pd (<b>3a</b>), Pt (<b>3b</b>)), in which the dpmppp
ligand coordinated to the M ion by two inner phosphorus atoms to form
a six-membered chelate ring with two outer phosphines uncoordinated.
The pendant outer phosphines readily reacted with [RhCl(CO)<sub>2</sub>]<sub>2</sub> to give the cationic heterotrinuclear complexes [MRh<sub>2</sub>(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>]X
(X = [RhCl<sub>2</sub>(CO)<sub>2</sub>], M = Pd (<b>4a</b>),
Pt (<b>4b</b>); X = PF<sub>6</sub>, M = Pd (<b>5a</b>),
Pt (<b>5b</b>)). The nickel analogue [NiRh<sub>2</sub>(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>]PF<sub>6</sub> (<b>5c</b>) was also prepared. A neutral homotrinuclear Rh<sub>3</sub> complex,
[Rh<sub>3</sub>(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>] (<b>6</b>), was synthesized by the reaction of [RhCl(CO)<sub>2</sub>]<sub>2</sub> with dpmppp and was further reacted with HgX<sub>2</sub> (X = Cl, Br, I) to afford the Rh<sub>3</sub>Hg tetranuclear
complexes [Rh<sub>3</sub>(HgX)(μ-Cl)<sub>2</sub>(μ-X)(μ-dpmppp)(CO)<sub>2</sub>]PF<sub>6</sub> (X = Cl (<b>7a</b>), Br (<b>7b</b>), I (<b>7c</b>)), where the Rh<sub>3</sub>(μ-Cl)<sub>2</sub>(μ-X) cores act as tridentate ligands to form three
donor–acceptor Rh→Hg interactions. The two CO ligands
of <b>7a</b>–<b>c</b> were replaced by XylNC to
yield [Rh<sub>3</sub>(HgX)(μ-Cl)<sub>2</sub>(μ-X)(μ-dpmppp)(XylNC)<sub>2</sub>]PF<sub>6</sub> (X = Cl (<b>8a</b>), Br (<b>8b</b>), I (<b>8c</b>)). The isocyanides had an appreciable influence
on the three Rh→Hg interactions, which was monitored by the <sup>2</sup><i>J</i><sub>HgP</sub> values observed in the <sup>31</sup>P{<sup>1</sup>H} NMR spectra and discussed on the basis of
DFT calculations. Complex <b>6</b> also reacted with CuCl and
HBF<sub>4</sub> to give [Rh<sub>3</sub>(CuCl)(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>] (<b>9</b>) and [Rh<sub>3</sub>(μ<sub>3</sub>-H)(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>]BF<sub>4</sub> (<b>10</b>), respectively. These results
suggested that the new tetraphosphine dpmppm proved quite useful in
constructing fine-tunable heterometallic frameworks
Configurational Isomerization of Dinuclear Iridium and Rhodium Complexes with a Series of NPPN Ligands, 2‑PyCH<sub>2</sub>(Ph)P(CH<sub>2</sub>)<sub><i>n</i></sub>P(Ph)CH<sub>2</sub>‑2-Py (Py = Pyridyl, <i>n</i> = 2–4)
New
heterodonor NPPN tetradentate ligands, 2-PyCH<sub>2</sub>(Ph)P(CH<sub>2</sub>)<sub><i>n</i></sub>P(Ph)CH<sub>2</sub>-2-Py (<i>meso</i>- and <i>rac</i>-L<sup><i>n</i></sup>; <i>n</i> = 2–4, Py = pyridyl), were prepared and
reacted with [Cp*MCl<sub>2</sub>]<sub>2</sub> (M = Ir, Rh; Cp* is
pentamethylcyclopentadienyl) in the presence of NH<sub>4</sub>BF<sub>4</sub> to afford a series of dinuclear complexes [(Cp*MCl)<sub>2</sub>(<i>meso</i>-L<sup><i>n</i></sup>)](BF<sub>4</sub>)<sub>2</sub> (M = Ir, <i>n</i> = 2 (<b>2a</b>),
3 (<b>3a</b>), 4 (<b>4a</b>); M = Rh, <i>n</i> = 2 (<b>2c</b>), 3 (<b>3c</b>), 4 (<b>4c</b>))
and [(Cp*MCl)<sub>2</sub>(<i>rac</i>-L<sup><i>n</i></sup>)](BF<sub>4</sub>)<sub>2</sub> (M = Ir, <i>n</i> =
2 (<b>2b</b>), 3 (<b>3b</b>), 4 (<b>4b</b>); M =
Rh, <i>n</i> = 2 (<b>2d</b>), 3 (<b>3d</b>),
4 (<b>4d</b>)), which were characterized by IR, <sup>1</sup>H and <sup>31</sup>P{<sup>1</sup>H} NMR, and ESI mass spectroscopic
techniques and X-ray crystallography. The configurations around the
two metal centers were controlled by the configuration of the coordinated
P atoms so as to avoid repulsive interaction between the phenyl group
on P and the chloride ligand, resulting in the formation of stereospecific
isomers; a <i>meso</i> configuration of the metal centers
is induced from <i>meso</i>-L<sup><i>n</i></sup> (abbreviated as <i>meso</i>-P<sub>2</sub>/<i>meso</i>-M<sub>2</sub>), and in contrast, a <i>rac</i> configuration
is induced from <i>rac</i>-L<sup><i>n</i></sup> (<i>rac</i>-P<sub>2</sub>/<i>rac</i>-M<sub>2</sub>). Furthermore, inversion of metal centers for the Ir<sub>2</sub> complexes occurred in DMSO at higher temperatures (60–100
°C), generating equilibrium mixtures of minor diastereomers (<i>meso</i>-P<sub>2</sub>/<i>rac</i>-M<sub>2</sub> or <i>rac</i>-P<sub>2</sub>/<i>meso</i>-M<sub>2</sub>) in
low ratios together with the major isomers (<i>meso</i>-P<sub>2</sub>/<i>meso</i>-M<sub>2</sub> or <i>rac</i>-P<sub>2</sub>/<i>rac</i>-M<sub>2</sub>). The equilibrium
constants, <i>K</i> = [minor isomer]/[major isomer], varied
appreciably depending on the lengths of the methylene chains as well
as configurations of the NPPN ligands; the overall propensity for
the <i>K</i> values was observed to be L<sup>2</sup> <
L<sup>3</sup> < L<sup>4</sup> and <i>meso</i>-L<sup><i>n</i></sup> < <i>rac</i>-L<sup><i>n</i></sup>, while <i>rac</i>-L<sup>3</sup>, <i>rac</i>-L<sup>4</sup>, and <i>meso</i>-L<sup>4</sup> showed almost
identical equilibrium constants, presumably resulting from no steric
influence between the two metal centers
Cyclic Trinuclear Rh<sub>2</sub>M Complexes (M = Rh, Pt, Pd, Ni) Supported by <i>meso</i>-1,3-Bis[(diphenylphosphinomethyl)phenylphosphino]propane
Reaction of [MCl<sub>2</sub>(cod)] (M = Pd, Pt) with
a tetraphosphine, <i>meso</i>-1,3-bis[(diphenylphosphinomethyl)phenylphosphino]propane
(dpmppp), afforded the mononuclear complexes [MCl<sub>2</sub>(dpmppp)]
(M = Pd (<b>3a</b>), Pt (<b>3b</b>)), in which the dpmppp
ligand coordinated to the M ion by two inner phosphorus atoms to form
a six-membered chelate ring with two outer phosphines uncoordinated.
The pendant outer phosphines readily reacted with [RhCl(CO)<sub>2</sub>]<sub>2</sub> to give the cationic heterotrinuclear complexes [MRh<sub>2</sub>(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>]X
(X = [RhCl<sub>2</sub>(CO)<sub>2</sub>], M = Pd (<b>4a</b>),
Pt (<b>4b</b>); X = PF<sub>6</sub>, M = Pd (<b>5a</b>),
Pt (<b>5b</b>)). The nickel analogue [NiRh<sub>2</sub>(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>]PF<sub>6</sub> (<b>5c</b>) was also prepared. A neutral homotrinuclear Rh<sub>3</sub> complex,
[Rh<sub>3</sub>(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>] (<b>6</b>), was synthesized by the reaction of [RhCl(CO)<sub>2</sub>]<sub>2</sub> with dpmppp and was further reacted with HgX<sub>2</sub> (X = Cl, Br, I) to afford the Rh<sub>3</sub>Hg tetranuclear
complexes [Rh<sub>3</sub>(HgX)(μ-Cl)<sub>2</sub>(μ-X)(μ-dpmppp)(CO)<sub>2</sub>]PF<sub>6</sub> (X = Cl (<b>7a</b>), Br (<b>7b</b>), I (<b>7c</b>)), where the Rh<sub>3</sub>(μ-Cl)<sub>2</sub>(μ-X) cores act as tridentate ligands to form three
donor–acceptor Rh→Hg interactions. The two CO ligands
of <b>7a</b>–<b>c</b> were replaced by XylNC to
yield [Rh<sub>3</sub>(HgX)(μ-Cl)<sub>2</sub>(μ-X)(μ-dpmppp)(XylNC)<sub>2</sub>]PF<sub>6</sub> (X = Cl (<b>8a</b>), Br (<b>8b</b>), I (<b>8c</b>)). The isocyanides had an appreciable influence
on the three Rh→Hg interactions, which was monitored by the <sup>2</sup><i>J</i><sub>HgP</sub> values observed in the <sup>31</sup>P{<sup>1</sup>H} NMR spectra and discussed on the basis of
DFT calculations. Complex <b>6</b> also reacted with CuCl and
HBF<sub>4</sub> to give [Rh<sub>3</sub>(CuCl)(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>] (<b>9</b>) and [Rh<sub>3</sub>(μ<sub>3</sub>-H)(μ-Cl)<sub>3</sub>(μ-dpmppp)(CO)<sub>2</sub>]BF<sub>4</sub> (<b>10</b>), respectively. These results
suggested that the new tetraphosphine dpmppm proved quite useful in
constructing fine-tunable heterometallic frameworks
Stepwise Expansion of Pd Chains from Binuclear Palladium(I) Complexes Supported by Tetraphosphine Ligands
Reaction of [Pd<sub>2</sub>(XylNC)<sub>6</sub>]X<sub>2</sub> (X = PF<sub>6</sub>, BF<sub>4</sub>) with a
linear tetraphosphine, <i>meso</i>-bis[(diphenylphosphinomethyl)phenylphosphino]methane
(dpmppm), afforded binuclear Pd<sup>I</sup> complexes, [Pd<sub>2</sub>(μ-dpmppm)<sub>2</sub>]X<sub>2</sub> ([<b>2</b>]X<sub>2</sub>), through an asymmetric dipalladium complex, [Pd<sub>2</sub>(μ-dpmppm)(XylNC)<sub>3</sub>]<sup>2+</sup> ([<b>1</b>]<sup>2+</sup>). Complex [<b>2</b>]<sup>2+</sup> readily reacted
with [Pd<sup>0</sup>(dba)<sub>2</sub>] (2 equiv) and an excess of
isocyanide, RNC (R = 2,6-xylyl (Xyl), <i>tert</i>-butyl
(<sup><i>t</i></sup>Bu)), to generate an equilibrium mixture
of [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(RNC)<sub>2</sub>]<sup>2+</sup> ([<b>3</b>′]<sup>2+</sup>) + RNC ⇄ [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(RNC)<sub>3</sub>]<sup>2+</sup> ([<b>3</b>]<sup>2+</sup>), from which [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(XylNC)<sub>3</sub>]<sup>2+</sup> ([<b>3a</b>]<sup>2+</sup>) and [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(<sup><i>t</i></sup>BuNC)<sub>2</sub>]<sup>2+</sup> ([<b>3b</b>′]<sup>2+</sup>) were isolated. Variable-temperature UV–vis and <sup>31</sup>P{<sup>1</sup>H} and <sup>1</sup>H NMR spectroscopic studies
on the equilibrium mixtures demonstrated that the tetrapalladium complexes
are quite fluxional in the solution state: the symmetric Pd<sub>4</sub> complex [<b>3b</b>′]<sup>2+</sup> predominantly existed
at higher temperatures (>0 °C), and the equilibrium shifted
to the asymmetric Pd<sub>4</sub> complex [<b>3b</b>]<sup>2+</sup> at a low temperature (∼−30 °C). The binding constants
were determined by UV–vis titration at 20 °C and revealed
that XylNC is of higher affinity to the Pd<sub>4</sub> core than <sup><i>t</i></sup>BuNC. In addition, both isocyanides exhibited
higher affinity to the electron deficient [Pd<sub>4</sub>(μ-dpmppmF<sub>2</sub>)<sub>2</sub>(RNC)<sub>2</sub>]<sup>2+</sup> ([<b>3F</b>′]<sup>2+</sup>) than to [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(RNC)<sub>2</sub>]<sup>2+</sup> ([<b>3</b>′]<sup>2+</sup>) (dpmppmF<sub>2</sub> = <i>meso</i>-bis[{di(3,5-difluorophenyl)phosphinomethyl}phenylphosphino]methane).
When [<b>2</b>]X<sub>2</sub> was treated with [Pd<sup>0</sup>(dba)<sub>2</sub>] (2 equiv) in the absence of RNC in acetonitrile,
linearly ordered octapalladium chains, [Pd<sub>8</sub>(μ-dpmppm)<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>]X<sub>4</sub> ([<b>4</b>]X<sub>4</sub>: X = PF<sub>6</sub>, BF<sub>4</sub>), were generated
through a coupling of two {Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>}<sup>2+</sup> fragments. Complex [<b>2</b>]<sup>2+</sup> was
also proven to be a good precursor for Pd<sub>2</sub>M<sub>2</sub> mixed-metal complexes, yielding [Pd<sub>2</sub>Cl(Cp*MCl) (Cp*MCl<sub>2</sub>)(μ-dpmppm)<sub>2</sub>]<sup>2+</sup> (M = Rh ([<b>5</b>]<sup>2+</sup>), Ir ([<b>6</b>]<sup>2+</sup>), and
[Au<sub>2</sub>Pd<sub>2</sub>Cl<sub>2</sub>(dpmppm–H)<sub>2</sub>]<sup>2+</sup> ([<b>7</b>]<sup>2+</sup>) by treatment with
[Cp*MCl<sub>2</sub>]<sub>2</sub> and [AuCl(PPh<sub>3</sub>)], respectively.
Complex [<b>7</b>]<sup>2+</sup> contains an unprecedented PC(sp<sup>3</sup>)P pincer ligand with a PCPCPCP backbone, dpmppm–H
of deprotonated dpmppm. The present results demonstrated that the
binuclear Pd<sup>I</sup> complex [<b>2</b>]<sup>2+</sup> was
a quite useful starting material to extend the palladium chains and
to construct Pd-involved heteromultinuclear systems
Stepwise Expansion of Pd Chains from Binuclear Palladium(I) Complexes Supported by Tetraphosphine Ligands
Reaction of [Pd<sub>2</sub>(XylNC)<sub>6</sub>]X<sub>2</sub> (X = PF<sub>6</sub>, BF<sub>4</sub>) with a
linear tetraphosphine, <i>meso</i>-bis[(diphenylphosphinomethyl)phenylphosphino]methane
(dpmppm), afforded binuclear Pd<sup>I</sup> complexes, [Pd<sub>2</sub>(μ-dpmppm)<sub>2</sub>]X<sub>2</sub> ([<b>2</b>]X<sub>2</sub>), through an asymmetric dipalladium complex, [Pd<sub>2</sub>(μ-dpmppm)(XylNC)<sub>3</sub>]<sup>2+</sup> ([<b>1</b>]<sup>2+</sup>). Complex [<b>2</b>]<sup>2+</sup> readily reacted
with [Pd<sup>0</sup>(dba)<sub>2</sub>] (2 equiv) and an excess of
isocyanide, RNC (R = 2,6-xylyl (Xyl), <i>tert</i>-butyl
(<sup><i>t</i></sup>Bu)), to generate an equilibrium mixture
of [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(RNC)<sub>2</sub>]<sup>2+</sup> ([<b>3</b>′]<sup>2+</sup>) + RNC ⇄ [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(RNC)<sub>3</sub>]<sup>2+</sup> ([<b>3</b>]<sup>2+</sup>), from which [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(XylNC)<sub>3</sub>]<sup>2+</sup> ([<b>3a</b>]<sup>2+</sup>) and [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(<sup><i>t</i></sup>BuNC)<sub>2</sub>]<sup>2+</sup> ([<b>3b</b>′]<sup>2+</sup>) were isolated. Variable-temperature UV–vis and <sup>31</sup>P{<sup>1</sup>H} and <sup>1</sup>H NMR spectroscopic studies
on the equilibrium mixtures demonstrated that the tetrapalladium complexes
are quite fluxional in the solution state: the symmetric Pd<sub>4</sub> complex [<b>3b</b>′]<sup>2+</sup> predominantly existed
at higher temperatures (>0 °C), and the equilibrium shifted
to the asymmetric Pd<sub>4</sub> complex [<b>3b</b>]<sup>2+</sup> at a low temperature (∼−30 °C). The binding constants
were determined by UV–vis titration at 20 °C and revealed
that XylNC is of higher affinity to the Pd<sub>4</sub> core than <sup><i>t</i></sup>BuNC. In addition, both isocyanides exhibited
higher affinity to the electron deficient [Pd<sub>4</sub>(μ-dpmppmF<sub>2</sub>)<sub>2</sub>(RNC)<sub>2</sub>]<sup>2+</sup> ([<b>3F</b>′]<sup>2+</sup>) than to [Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>(RNC)<sub>2</sub>]<sup>2+</sup> ([<b>3</b>′]<sup>2+</sup>) (dpmppmF<sub>2</sub> = <i>meso</i>-bis[{di(3,5-difluorophenyl)phosphinomethyl}phenylphosphino]methane).
When [<b>2</b>]X<sub>2</sub> was treated with [Pd<sup>0</sup>(dba)<sub>2</sub>] (2 equiv) in the absence of RNC in acetonitrile,
linearly ordered octapalladium chains, [Pd<sub>8</sub>(μ-dpmppm)<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>]X<sub>4</sub> ([<b>4</b>]X<sub>4</sub>: X = PF<sub>6</sub>, BF<sub>4</sub>), were generated
through a coupling of two {Pd<sub>4</sub>(μ-dpmppm)<sub>2</sub>}<sup>2+</sup> fragments. Complex [<b>2</b>]<sup>2+</sup> was
also proven to be a good precursor for Pd<sub>2</sub>M<sub>2</sub> mixed-metal complexes, yielding [Pd<sub>2</sub>Cl(Cp*MCl) (Cp*MCl<sub>2</sub>)(μ-dpmppm)<sub>2</sub>]<sup>2+</sup> (M = Rh ([<b>5</b>]<sup>2+</sup>), Ir ([<b>6</b>]<sup>2+</sup>), and
[Au<sub>2</sub>Pd<sub>2</sub>Cl<sub>2</sub>(dpmppm–H)<sub>2</sub>]<sup>2+</sup> ([<b>7</b>]<sup>2+</sup>) by treatment with
[Cp*MCl<sub>2</sub>]<sub>2</sub> and [AuCl(PPh<sub>3</sub>)], respectively.
Complex [<b>7</b>]<sup>2+</sup> contains an unprecedented PC(sp<sup>3</sup>)P pincer ligand with a PCPCPCP backbone, dpmppm–H
of deprotonated dpmppm. The present results demonstrated that the
binuclear Pd<sup>I</sup> complex [<b>2</b>]<sup>2+</sup> was
a quite useful starting material to extend the palladium chains and
to construct Pd-involved heteromultinuclear systems
Hydride-Bridged Pt<sub>2</sub>M<sub>2</sub>Pt<sub>2</sub> Hexanuclear Metal Strings (M = Pt, Pd) Derived from Reductive Coupling of Pt<sub>2</sub>M Building Blocks Supported by Triphosphine Ligands
Linear Pt<sub>2</sub>M<sub>2</sub>Pt<sub>2</sub> hexanuclear
clusters [Pt<sub>4</sub>M<sub>2</sub>(μ-H)(μ-dpmp)<sub>4</sub>(XylNC)<sub>2</sub>](PF<sub>6</sub>)<sub>3</sub> (M = Pt (<b>2a</b>), Pd (<b>3a</b>); dpmp = bis(diphenylphosphinomethyl)phenylphosphine)
were synthesized by site-selective reductive coupling of trinuclear
building blocks, [Pt<sub>2</sub>M(μ-dpmp)<sub>2</sub>(XylNC)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> (M = Pt (<b>1a</b>), Pd
(<b>1b</b>)), and were revealed as the first example of low-oxidation-state
metal strings bridged by a hydride with M–H–M linear
structure. The characteristic intense absorption bands around 583
nm (<b>2a</b>) and 674 nm (<b>3a</b>) were assigned to
the HOMO–LUMO transition on the basis of a net three-center/two-electron
(3c/2e) bonding interaction within the central M<sub>2</sub>(μ-H)
part. The terminal ligands of <b>2a</b> were replaced by H<sup>–</sup>, I<sup>–</sup>, and CO to afford [Pt<sub>6</sub>(μ-H)(H)<sub>2</sub>(μ-dpmp)<sub>4</sub>]<sup>+</sup> (<b>4</b>), [Pt<sub>6</sub>(μ-H)I<sub>2</sub>(μ-dpmp)<sub>4</sub>](PF<sub>6</sub>) (<b>5</b>), and [Pt<sub>6</sub>(μ-H)(μ-dpmp)<sub>4</sub>(CO)<sub>2</sub>](PF<sub>6</sub>)<sub>3</sub> (<b>6</b>). The electronic structures of these hexaplatinum cores, {Pt<sub>6</sub>(μ-H)(μ-dpmp)<sub>4</sub>}<sup>3+</sup>, are varied
depending on the σ-donating ability of axial ligands; the characteristic
HOMO–LUMO transition bands interestingly red-shifted in the
order of CO < XylNC < I<sup>–</sup> < H<sup>–</sup>, which was in agreement with calculated HOMO–LUMO gaps derived
from DFT optimizations of <b>2a</b>, <b>4</b>, <b>5</b>, and <b>6</b>. The nature of the axial ligands influences
the redox activities of the hexanuclear complexes; <b>2a</b>, <b>3a</b>, and <b>5</b> were proven to be redox-active
by the cyclic voltammograms and underwent two-electron oxidation by
potentiostatic electrolysis to afford [Pt<sub>4</sub>M<sub>2</sub>(μ-dpmp)<sub>4</sub>(XylNC)<sub>2</sub>](PF<sub>6</sub>)<sub>4</sub> (M = Pt (<b>7a</b>), Pd (<b>8a</b>)). The present
results are important in developing bottom-up synthetic methodology
to create nanostructured metal strings by utilizing fine-tunable metallic
building blocks
Hydride-Bridged Pt<sub>2</sub>M<sub>2</sub>Pt<sub>2</sub> Hexanuclear Metal Strings (M = Pt, Pd) Derived from Reductive Coupling of Pt<sub>2</sub>M Building Blocks Supported by Triphosphine Ligands
Linear Pt<sub>2</sub>M<sub>2</sub>Pt<sub>2</sub> hexanuclear
clusters [Pt<sub>4</sub>M<sub>2</sub>(μ-H)(μ-dpmp)<sub>4</sub>(XylNC)<sub>2</sub>](PF<sub>6</sub>)<sub>3</sub> (M = Pt (<b>2a</b>), Pd (<b>3a</b>); dpmp = bis(diphenylphosphinomethyl)phenylphosphine)
were synthesized by site-selective reductive coupling of trinuclear
building blocks, [Pt<sub>2</sub>M(μ-dpmp)<sub>2</sub>(XylNC)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> (M = Pt (<b>1a</b>), Pd
(<b>1b</b>)), and were revealed as the first example of low-oxidation-state
metal strings bridged by a hydride with M–H–M linear
structure. The characteristic intense absorption bands around 583
nm (<b>2a</b>) and 674 nm (<b>3a</b>) were assigned to
the HOMO–LUMO transition on the basis of a net three-center/two-electron
(3c/2e) bonding interaction within the central M<sub>2</sub>(μ-H)
part. The terminal ligands of <b>2a</b> were replaced by H<sup>–</sup>, I<sup>–</sup>, and CO to afford [Pt<sub>6</sub>(μ-H)(H)<sub>2</sub>(μ-dpmp)<sub>4</sub>]<sup>+</sup> (<b>4</b>), [Pt<sub>6</sub>(μ-H)I<sub>2</sub>(μ-dpmp)<sub>4</sub>](PF<sub>6</sub>) (<b>5</b>), and [Pt<sub>6</sub>(μ-H)(μ-dpmp)<sub>4</sub>(CO)<sub>2</sub>](PF<sub>6</sub>)<sub>3</sub> (<b>6</b>). The electronic structures of these hexaplatinum cores, {Pt<sub>6</sub>(μ-H)(μ-dpmp)<sub>4</sub>}<sup>3+</sup>, are varied
depending on the σ-donating ability of axial ligands; the characteristic
HOMO–LUMO transition bands interestingly red-shifted in the
order of CO < XylNC < I<sup>–</sup> < H<sup>–</sup>, which was in agreement with calculated HOMO–LUMO gaps derived
from DFT optimizations of <b>2a</b>, <b>4</b>, <b>5</b>, and <b>6</b>. The nature of the axial ligands influences
the redox activities of the hexanuclear complexes; <b>2a</b>, <b>3a</b>, and <b>5</b> were proven to be redox-active
by the cyclic voltammograms and underwent two-electron oxidation by
potentiostatic electrolysis to afford [Pt<sub>4</sub>M<sub>2</sub>(μ-dpmp)<sub>4</sub>(XylNC)<sub>2</sub>](PF<sub>6</sub>)<sub>4</sub> (M = Pt (<b>7a</b>), Pd (<b>8a</b>)). The present
results are important in developing bottom-up synthetic methodology
to create nanostructured metal strings by utilizing fine-tunable metallic
building blocks