101 research outputs found

    SARS-CoV Sampling from 3 Portals

    Get PDF

    Henoch-Schonlein Purpura—A Case Report and Review of the Literature

    Get PDF
    We describe a case of an adolescent male with Henoch-Schonlein purpura (HSP), presenting with cutaneous and gastrointestinal manifestations. Endoscopy revealed diffuse ulcerations in the stomach, duodenum, and right colon. Biopsies revealed a leukocytoclastic vasculitis in the skin and gastrointestinal tract. Steroid therapy led to complete resolution of the symptoms. HSP is the most common childhood vasculitis, and is characterized by the classic tetrad of nonthrombocytopenic palpable purpura, arthritis or arthralgias, gastrointestinal and renal involvement. It is a systemic disease where antigen-antibody (IgA) complexes activate the alternate complement pathway, resulting in inflammation and small vessel vasculitis. Mild disease resolves spontaneously, and symptomatic treatment alone is sufficient. Systemic steroids are recommended for moderate to severe HSP. The prognosis depends upon the extent of renal involvement, which requires close followup. Early recognition of multiorgan involvement, especially outside of the typical age group, as in our adolescent patient, and appropriate intervention can mitigate the disease and limit organ damage

    Virus-like particles identify an HIV V1V2 Apex-1 binding neutralizing antibody that lacks a protruding loop

    Get PDF
    Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, enabl them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain to side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage identifies a solution for V1V2apex binding that provides a more conventional B cell pathway for vaccine design

    Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 envelope glycoprotein trimers on neutralizing antibody induction

    Get PDF
    Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb speciUcity using rational heterologous boosts

    Historical perspective and recent progress in cardiac ion channelopathies research and clinical practice in Hong Kong

    Get PDF
    Cardiac ion channelopathies encompass a set of inherited or acquired conditions that are due to dysfunction in ion channels or their associated proteins, typically in the presence of structurally normal hearts. They are associated with the development of ventricular arrhythmias and sudden cardiac death. The aim of this review is to provide a historical perspective and recent advances in the research of the cardiac ion channelopathies, Brugada syndrome, long QT syndrome and catecholaminergic polymorphic ventricular tachycardia, in Hong Kong, China. In particular, recent works on the development of novel predictive models incorporating machine learning techniques to improve risk stratification are outlined. The availability of linked records of affected patients with good longitudinal data in the public sector, together with multidisciplinary collaborations, implies that ion channelopathy research efforts have advanced significantly

    Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways

    Get PDF
    The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p

    Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways

    Get PDF
    The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p

    Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes.</p> <p>Methods</p> <p>In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation.</p> <p>Results</p> <p>We present eight genes (<it>KRT19</it>, <it>PRKCDBP</it>, <it>SCNN1A</it>, <it>POU2F2</it>, <it>TGFBI</it>, <it>COL1A2</it>, <it>DHRS3 </it>and <it>DUSP23</it>) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes <it>SCNN1A </it>(p < 0.001), <it>PRKCDBP </it>(p < 0.001) and <it>KRT19 </it>(p < 0.01). Among these, the mRNA expression of <it>KRT19 </it>and <it>PRKCDBP </it>was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for <it>KRT19 </it>and fold change -2.4, p = 0.04 for <it>PRKCDBP</it>).</p> <p>Conclusions</p> <p>In our study, a low methylation frequency of <it>SCNN1A</it>, <it>PRKCDBP </it>and <it>KRT19 </it>is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas.</p
    corecore