24 research outputs found

    Hemimegalencephaly Associated with Congenital Infiltrating Lipomatosis of the Face: A Case Report

    Full text link
    Hemimegalencephaly (HME) is a rare congenital malformation of the brain, grossly characterized by enlargement and overdevelopment of one cerebral hemisphere. We describe a 16-month-old patient with facial asymmetry caused by congenital infiltrating lipomatosis of the face (CILF) associated with ipsilateral HME. Although HME has been described as part of different syndromic diseases, the association of HME with CILF has been rarely reported. Our case and literature review suggest that when the diagnosis of CILF is suspected or established, the possible presence of associated HME has to be considered and a magnetic resonance imaging (MRI) must be performed even in absence of neurological features, not always present in early stages. MRI also demonstrates the involvement of intracranial structures outside the affected cerebral hemisphere, such as brain stem, cerebellum, cranial nerves, and blood vessels. In our patient, computed tomography of the brain provided detailed information on osseous hypertrophy and skull-base foramina enlargement

    Muscle-MRI and Functional Levels for the Evaluation of Upper Limbs in Duchenne Muscular Dystrophy: A Critical Review of the Literature

    No full text
    Many qualitative and quantitative Magnetic Resonance Imaging (MRI) techniques have been applied to evaluate muscle fat degeneration in Duchenne muscular dystrophy (DMD) subjects, but only few studies have focused on the upper limbs. We reviewed the literature in order to evaluate the association between muscle MRI findings and motor function levels in the upper limbs of DMD patients. Ten studies with upper limb muscle MRI data were available. Four explored all upper limb segments, while six explored only the forearm. Functional assessments were performed in nine of the ten studies. All of the studies showed a significant correlation between muscle MRI changes and motor function levels in both ambulant and non-ambulant DMD patients

    Atypical Teratoid Rhabdoid Tumor: Proposal of a Diagnostic Pathway Based on Clinical Features and Neuroimaging Findings

    No full text
    Purpose: To assess the main imaging and clinical features in adult- and pediatric-onset atypical teratoid rhabdoid tumor (ATRT) in order to build a predefined pathway useful for the diagnosis. Methods: We enrolled 11 ATRT patients (10 children, one adult) and we conducted a literature search on PubMed Central using the key terms “adult” or “pediatric” and “atypical teratoid/rhabdoid tumor”. We collected clinical and neuroradiological data reported in previous studies and combined them with those from our case series. A three step process was built to reach diagnosis by identifying the main distinctive clinical and imaging features. Results: Clinical evaluation: neurological symptoms were nonspecific. ATRT was more frequent in children under 3 years of age (7 out of 10 children) and infratentorial localization was reported more frequently in children under the age of 24 months. Midline/off-midline localization was influenced by the age. Imaging findings: Preferential location near the ventricles and liquor spaces and the presence of eccentric cysts were hallmark for ATRT; higher frequency of peripheral cysts was detected in children and in the supratentorial compartment (five out of eight patients with solid-cystic ATRT). Leptomeningeal dissemination at diagnosis was common (5 out of 10 children), while intratumoral hemorrhage, calcifications, and high cellularity were non-specific findings. Histopathological analysis: specific immunohistochemical markers were essential to confirm the diagnosis. Conclusion: In younger children, a bulky, heterogeneous mass with eccentric cystic components and development near ventricles or cisternal spaces may be suggestive of ATRT. ATRT diagnosis is more challenging in adults and relies exclusively on neuropathological examination

    Advanced MR imaging in hemispheric low-grade gliomas before surgery; the indications and limits in the pediatric age.

    No full text
    INTRODUCTION: Advanced magnetic resonance imaging (MRI) techniques is an umbrella term that includes diffusion (DWI) and diffusion tensor (DTI), perfusion (PWI), spectroscopy (MRS), and functional (fMRI) imaging. These advanced modalities have improved the imaging of brain tumors and provided valuable additional information for treatment planning. Despite abundant literature on advanced MRI techniques in adult brain tumors, few reports exist for pediatric brain ones, potentially because of technical challenges. REVIEW OF THE LITERATURE: The authors review techniques and clinical applications of DWI, PWI, MRS, and fMRI, in the setting of pediatric hemispheric low-grade gliomas. PERSONAL EXPERIENCE: The authors propose their personal experience to highlight benefits and limits of advanced MR imaging in diagnosis, grading, and presurgical planning of pediatric hemispheric low-grade gliomas. DISCUSSION: Advanced techniques should be used as complementary tools to conventional MRI, and in theory, the combined use of the three techniques should ensure achieving the best results in the diagnosis of hemispheric low-grade glioma and in presurgical planning to maximize tumor resection and preserve brain function. FUTURE PERSPECTIVES: In the setting of pediatric neurooncology, these techniques can be used to distinguish low-grade from high-grade tumor. However, these methods have to be applied on a large scale to understand their real potential and clinical relapse, and further technical development is required to reduce the excessive scan times and other technical limitations

    Longitudinal Motor Functional Outcomes and Magnetic Resonance Imaging Patterns of Muscle Involvement in Upper Limbs in Duchenne Muscular Dystrophy

    No full text
    Background and Objectives: The aim of this study was to evaluate longitudinal changes using both upper limb muscle Magnetic Resonance Imaging (MRI) at shoulder, arm and forearm levels and Performance of upper limb (PUL) in ambulant and non-ambulant Duchenne Muscular Dystrophy (DMD) patients. We also wished to define whether baseline muscle MRI could help to predict functional changes after one year. Materials and Methods: Twenty-seven patients had both baseline and 12month muscle MRI and PUL assessments one year later. Results: Ten were ambulant (age range 5–16 years), and 17 non ambulant (age range 10–30 years). Increased abnormalities equal or more than 1.5 point on muscle MRI at follow up were found on all domains: at shoulder level 12/27 patients (44%), at arm level 4/27 (15%) and at forearm level 6/27 (22%). Lower follow up PUL score were found in 8/27 patients (30%) at shoulder level, in 9/27 patients (33%) at mid-level whereas no functional changes were found at distal level. There was no constant association between baseline MRI scores and follow up PUL scores at arm and forearm levels but at shoulder level patients with moderate impairment on the baseline MRI scores between 16 and 34 had the highest risk of decreased function on PUL over a year. Conclusions: Our results confirmed that the integrated use of functional scales and imaging can help to monitor functional and MRI changes over time

    ColorViz, a New and Rapid Tool for Assessing Collateral Circulation during Stroke

    No full text
    Prognosis of patients with acute ischemic stroke is strictly related to the patency and prominence of the collateral leptomeningeal pathways distal to the arterial occlusion. The gold standard for assessment of collateral circulation is conventional angiography, but it is invasive and used in selected cases. To date, the most reliable technique is multiphase CTA; currently, the available classifications of collateral circles are often complex, time-consuming, and require a trained observer. The purpose of our work is to establish the effectiveness of a new semi-automatic post-processing software (ColorViz FastStroke, GE Healthcare, Milwaukee, Wisconsin) in evaluation of collateral circulation compared to the six-point classifications of multiphase CTA already validated in literature. We selected 86 patients with anterior ischemic stroke symptoms who underwent multiphasic CTA in our emergency department. Two radiologists separately evaluated the collateral leptomeningeal vessels, analyzing respectively, the multiphase CTA (using the six-point scale and its trichotomized form) and ColorViz (using a three-point scale). Then the results were matched. We found a good correlation between the two different analyses; the main advantage of ColorViz is that, while maintaining fast diagnostic times, it allows a simpler and more immediate evaluation of collateral circulation, especially for less experienced radiologists

    Pediatric low-grade glioma and neurofibromatosis type 1: A single-institution experience

    No full text
    Background: Neurofibromatosis type 1 (NF1)-related gliomas appear to have a clinical behavior different from that of sporadic cases. The purpose of the study was to investigate the role of different factors in influencing the tumor response rate of children receiving chemotherapy for their symptomatic glioma. Methods: Between 1995 and 2015, 60 patients with low-grade glioma (42 sporadic cases and 18 cases with NF1) were treated. Patients with brainstem gliomas were excluded. Thirty-nine patients underwent exclusive or postsurgical chemotherapy (vincristine/carboplatin-based regimen). Results: Disease reduction was achieved in 12 of the 28 patients (42.8%) with sporadic low-grade glioma and in 9 of the 11 patients (81.8%) with NF1, with a significant difference between the 2 groups (P < 0.05). The response to chemotherapy in both the patient groups was not significantly influenced by sex, age, tumor site, and histopathology, although disease reduction occurred more frequently in children aged under 3 years. Conclusions: Our study showed that pediatric patients with low-grade glioma and NF1 are more likely to respond to chemotherapy than those with non-NF1

    MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma.

    No full text
    BACKGROUND: Pilocytic astrocytoma (PA) is the most common pediatric brain glioma and is considered the prototype of benign circumscribed astrocytoma. Despite its low malignancy, the CT and MRI features of brain PA may resemble those of much more aggressive brain tumors. Misdiagnosis of PA is particularly easy when it demonstrates MR morphological and non-morphological findings that are inconsistent with its non-aggressive nature and that overlap with the features of more aggressive brain tumors. METHOD: Basing on the evidence that the variation in the histological, genetic, and metabolic "fingerprint" for brain PA is dependent on tumor location, and the hypothesis that tumor location is related to the broad spectrum of morphological and non-morphological MR imaging findings, the authors discuss the MR imaging appearance of brain PA using a location-based approach to underline the typical and less typical imaging features and the main differential diagnosis of brain PA. A brief summary of the main pathological and clinical features, the natural history, and the treatment of brain PA is also provided. RESULT: A combination of morphological and non-morphological MR imaging features and a site-based approach to differential diagnosis are required for a pre-operative diagnosis. The new "cutting-edge" MR imaging sequences have the potential to impact the ease and confidence of pediatric brain tumor interpretation and offer a more efficient diagnostic work-up. CONCLUSIONS: Although the typical imaging features of brain pilocytic astrocytoma make radiological diagnosis relatively easy, an atypical and more aggressive appearance can lead to misdiagnosis. Knowing the broad spectrum of imaging characteristics on conventional and advanced MR imaging is important for accurate pre-operative radiological diagnosis and correctly interpreting changes during follow-up

    Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype

    No full text
    GPR56-related bilateral frontoparietal polymicrogyria (BFPP) is a rare recessively inherited disorder of neuronal migration caused by mutations of GPR56. To better delineate the clinical, molecular, and neuroradiological phenotypes associated with BFPP, we performed conventional magnetic resonance imaging and diffusion tensor imaging studies in a series of prospectively enrolled patients carrying novel GPR56 mutations. All subjects with GPR56-related BFPP showed a characteristic morphological pattern, including abnormalities of the cerebellar cortex with cerebellar cysts located at the periphery, a mildly thick corpus callosum, and a flat pons. Significant alterations of myelination and white matter tract abnormalities were documented. The present study confirms the phenotypic overlap between GPR56-related brain dysgenesis and other cobblestone-like syndromes and illustrates the contribution of 3D neuroimaging in the characterization of malformations of cortical development
    corecore