26 research outputs found

    Congiungere la modellazione dei movimenti di massa alla realtĂ 

    Get PDF
    I flussi di massa sono pericoli naturali di tipo gravitativo tipici delle zone montane che causano ogni anno perdite economiche e vittime. I modelli numerici sono strumenti per prevedere la propagazione di potenziali eventi di flussi di massa su una determinata topografia, ma questi richiedono diversi input. Gli input e i processi che sostanzialmente influenzano i risultati dei modelli sono rappresentati dalla dal volume, dalle condizioni di innesco e dalle interazioni topografia – flusso di massa. Pertanto, l'obiettivo principale della tesi è quello di migliorare la quantificazione del volume coinvolto in un evento di flusso di massa e di aumentare la rappresentazione dell’interazione tra il flusso e la topografia. Quindi, sono stati studiati due tipi di flussi di massa: debris flow e valanghe di neve. Per quanto riguarda i debris flow, la tesi vuole migliorare l'affidabilità dei modelli analizzando l'aumento del volume del flusso attraverso l'erosione del letto del canale e il collasso di strutture di mitigazione. Per le valanghe di neve, lo studio ha come obbiettivo quello di migliorare l'identificazione delle possibili aree di distacco. La tesi è strutturata come una raccolta di articoli dei quali tre sono stati pubblicati e uno è in fase di revisione. Il primo articolo ha migliorato la rappresentazione dei fenomeni erosivi nei modelli numerici grazie ai dati di un evento di debris flow avvenuto nel bacino del rio Gere (Veneto, IT). Una funzione basata sui valori di pendenza è stata definita per calcolare il coefficiente di erosione, successivamente utilizzato per riprodurre l’erosione osservata nel canale. I risultati sono utili per migliorare l'accuratezza di futuri scenari da debris flow per i quali l'erosione è un importante processo nella dinamica del flusso. Il secondo studio ha definito una procedura per simulare l'effetto del collasso delle briglie di consolidamento in un evento di debris flow. La metodologia è stata sviluppata nel rio Rotian (Trentino, IT), dove un evento di pioggia estrema ha innescato un debris flow che ha provocato il collasso di una serie di 15 briglie. La metodologia sviluppata può essere direttamente applicata per mappare il rischio residuo dei canali da debris flow in cui siano presenti opere o dove la mancanza di manutenzione delle misure di mitigazione può diminuire la loro stabilità. Il terzo progetto riguarda lo studio della rugosità del terreno. Sette algoritmi di calcolo della rugosità sono stati testati in due aree studio al fine di identificare quale algoritmo possa rappresentare nel modo più appropriato le tipologie del terreno che interagiscono con i fenomeni di massa. I risultati hanno mostrato che il miglior algoritmo è risultato il vector ruggedness e che l’utilizzo di una risoluzione maggiore non ha migliorato le performance. Il quarto progetto ha analizzato la capacità di protezione delle foreste colpite da tempeste di vento. Due nuovi algoritmi per valutare le caratteristiche degli alberi abbattuti sono stati sviluppati. I risultati hanno evidenziato che il momento di protezione minimo delle foreste contro le valanghe di neve è dopo 10 anni l'evento di tempesta. Inoltre, gli algoritmi possono essere applicati direttamente su scala regionale per la gestione e il monitoraggio delle aree forestali colpite da tempeste. I diversi studi hanno analizzato i processi di erosione, l'effetto del collasso di briglie e l'identificazione di potenziali aree di innesco. I risultati dei quattro progetti hanno risposto ai corrispondenti obbiettivi, migliorando la comprensione dei flussi di massa e quindi la previsione di eventi futuri. Inoltre, i progetti forniscono importanti risultati metodologici e nuovi metodi sono stati sviluppati e testati al fine di migliorare la stima del volume dei flussi di massa. Tali metodi sono inoltre applicabili al di fuori delle aree di studio prese in esame, dando supporto a diversi stakeholder nella gestione dei rischi naturali.Mass flows are gravitational natural hazards typical of mountain areas causing economic losses and fatalities every year. Numerical models are a way to predict the propagation of potential mass flow events over a certain topography. To appropriately reproduce future events, models required different inputs. Inputs and processes consistently affecting the outcomes of mass flow models regard the released volume, the triggering conditions and the interaction with the topography and the features on the ground once the flow is in motion. Therefore, the main objective of the thesis is to improve the quantification of the input volume and to improve the implementation of processes of interaction with the basal topography. In this context, the focus has been placed on two types of mass flows: debris flows and snow avalanches. Regarding debris flows, the study aims to improve the reliability of models to capture the increase in flow volume through channel bed erosion and mitigation structure collapse. For snow avalanches, the study wants to improve the identification of possible avalanche release areas taking into account the role of different types of vegetation structures. The thesis was structured as a collection of articles of which three have been published and one is currently under review. The first paper investigated the improvement of debris flow erosion in computational models thanks to data of a severe event occurred in the Gere catchment (Veneto, IT). A function based on a smoothed terrain slope map was calibrated to derive the erosion coefficient, successively used to reproduce the observed erosion process occurred in the channel. Results can improve the reliability of future scenarios related to debris flows for which bed erosion plays an important role in volume increase. The second study defined a procedure to simulate the effect of check dam collapse in a debris flow event. The methodology was developed in the rio Rotian (Trentino, IT) where an extreme rainfall event triggered a debris flow that collapsed a series of 15 check dams. The adopted methodology can be straight applied to map the residual risk of mountain channels or where the lack of maintenance may decrease torrent countermeasure stability. The third project involves the study of terrain roughness. We tested seven algorithms computing terrain roughness in two study areas with the aim to identify which roughness algorithm can represent in the most appropriate way the features on the ground interacting with natural hazards. Outcomes showed that the best algorithm resulted the vector ruggedness and that the increase in data resolution did not improve the classification performance. Results can improve the reliability of mass flow propagation models over natural areas. The fourth project analysed the protection capacity of forests affected by windstorms. We developed and tested two algorithms to assess the characteristics of abated trees. Results assessed that the time of minimum level of forest protection against snow avalanches in 10 years after the storm event. The developed algorithms can be straight applied at regional scale to monitor and improve the management of windthrow areas. The projects investigated entrainment processes, effect of mitigation structure failures and the identification of potential triggering areas. Outcomes of the four projects filled the respective gaps of knowledge, improving the understanding of mass flows and then the prediction of future events. Furthermore, the projects have strong methodological outcomes and new methods to improve the volume estimation of mass flows have been developed and tested. Such methods are further applicable outside of the study areas, supporting different stakeholders in the management of natural hazards of mountain areas

    Congiungere la modellazione dei movimenti di massa alla realtĂ 

    Get PDF
    I flussi di massa sono pericoli naturali di tipo gravitativo tipici delle zone montane che causano ogni anno perdite economiche e vittime. I modelli numerici sono strumenti per prevedere la propagazione di potenziali eventi di flussi di massa su una determinata topografia, ma questi richiedono diversi input. Gli input e i processi che sostanzialmente influenzano i risultati dei modelli sono rappresentati dalla dal volume, dalle condizioni di innesco e dalle interazioni topografia – flusso di massa. Pertanto, l'obiettivo principale della tesi è quello di migliorare la quantificazione del volume coinvolto in un evento di flusso di massa e di aumentare la rappresentazione dell’interazione tra il flusso e la topografia. Quindi, sono stati studiati due tipi di flussi di massa: debris flow e valanghe di neve. Per quanto riguarda i debris flow, la tesi vuole migliorare l'affidabilità dei modelli analizzando l'aumento del volume del flusso attraverso l'erosione del letto del canale e il collasso di strutture di mitigazione. Per le valanghe di neve, lo studio ha come obbiettivo quello di migliorare l'identificazione delle possibili aree di distacco. La tesi è strutturata come una raccolta di articoli dei quali tre sono stati pubblicati e uno è in fase di revisione. Il primo articolo ha migliorato la rappresentazione dei fenomeni erosivi nei modelli numerici grazie ai dati di un evento di debris flow avvenuto nel bacino del rio Gere (Veneto, IT). Una funzione basata sui valori di pendenza è stata definita per calcolare il coefficiente di erosione, successivamente utilizzato per riprodurre l’erosione osservata nel canale. I risultati sono utili per migliorare l'accuratezza di futuri scenari da debris flow per i quali l'erosione è un importante processo nella dinamica del flusso. Il secondo studio ha definito una procedura per simulare l'effetto del collasso delle briglie di consolidamento in un evento di debris flow. La metodologia è stata sviluppata nel rio Rotian (Trentino, IT), dove un evento di pioggia estrema ha innescato un debris flow che ha provocato il collasso di una serie di 15 briglie. La metodologia sviluppata può essere direttamente applicata per mappare il rischio residuo dei canali da debris flow in cui siano presenti opere o dove la mancanza di manutenzione delle misure di mitigazione può diminuire la loro stabilità. Il terzo progetto riguarda lo studio della rugosità del terreno. Sette algoritmi di calcolo della rugosità sono stati testati in due aree studio al fine di identificare quale algoritmo possa rappresentare nel modo più appropriato le tipologie del terreno che interagiscono con i fenomeni di massa. I risultati hanno mostrato che il miglior algoritmo è risultato il vector ruggedness e che l’utilizzo di una risoluzione maggiore non ha migliorato le performance. Il quarto progetto ha analizzato la capacità di protezione delle foreste colpite da tempeste di vento. Due nuovi algoritmi per valutare le caratteristiche degli alberi abbattuti sono stati sviluppati. I risultati hanno evidenziato che il momento di protezione minimo delle foreste contro le valanghe di neve è dopo 10 anni l'evento di tempesta. Inoltre, gli algoritmi possono essere applicati direttamente su scala regionale per la gestione e il monitoraggio delle aree forestali colpite da tempeste. I diversi studi hanno analizzato i processi di erosione, l'effetto del collasso di briglie e l'identificazione di potenziali aree di innesco. I risultati dei quattro progetti hanno risposto ai corrispondenti obbiettivi, migliorando la comprensione dei flussi di massa e quindi la previsione di eventi futuri. Inoltre, i progetti forniscono importanti risultati metodologici e nuovi metodi sono stati sviluppati e testati al fine di migliorare la stima del volume dei flussi di massa. Tali metodi sono inoltre applicabili al di fuori delle aree di studio prese in esame, dando supporto a diversi stakeholder nella gestione dei rischi naturali.Mass flows are gravitational natural hazards typical of mountain areas causing economic losses and fatalities every year. Numerical models are a way to predict the propagation of potential mass flow events over a certain topography. To appropriately reproduce future events, models required different inputs. Inputs and processes consistently affecting the outcomes of mass flow models regard the released volume, the triggering conditions and the interaction with the topography and the features on the ground once the flow is in motion. Therefore, the main objective of the thesis is to improve the quantification of the input volume and to improve the implementation of processes of interaction with the basal topography. In this context, the focus has been placed on two types of mass flows: debris flows and snow avalanches. Regarding debris flows, the study aims to improve the reliability of models to capture the increase in flow volume through channel bed erosion and mitigation structure collapse. For snow avalanches, the study wants to improve the identification of possible avalanche release areas taking into account the role of different types of vegetation structures. The thesis was structured as a collection of articles of which three have been published and one is currently under review. The first paper investigated the improvement of debris flow erosion in computational models thanks to data of a severe event occurred in the Gere catchment (Veneto, IT). A function based on a smoothed terrain slope map was calibrated to derive the erosion coefficient, successively used to reproduce the observed erosion process occurred in the channel. Results can improve the reliability of future scenarios related to debris flows for which bed erosion plays an important role in volume increase. The second study defined a procedure to simulate the effect of check dam collapse in a debris flow event. The methodology was developed in the rio Rotian (Trentino, IT) where an extreme rainfall event triggered a debris flow that collapsed a series of 15 check dams. The adopted methodology can be straight applied to map the residual risk of mountain channels or where the lack of maintenance may decrease torrent countermeasure stability. The third project involves the study of terrain roughness. We tested seven algorithms computing terrain roughness in two study areas with the aim to identify which roughness algorithm can represent in the most appropriate way the features on the ground interacting with natural hazards. Outcomes showed that the best algorithm resulted the vector ruggedness and that the increase in data resolution did not improve the classification performance. Results can improve the reliability of mass flow propagation models over natural areas. The fourth project analysed the protection capacity of forests affected by windstorms. We developed and tested two algorithms to assess the characteristics of abated trees. Results assessed that the time of minimum level of forest protection against snow avalanches in 10 years after the storm event. The developed algorithms can be straight applied at regional scale to monitor and improve the management of windthrow areas. The projects investigated entrainment processes, effect of mitigation structure failures and the identification of potential triggering areas. Outcomes of the four projects filled the respective gaps of knowledge, improving the understanding of mass flows and then the prediction of future events. Furthermore, the projects have strong methodological outcomes and new methods to improve the volume estimation of mass flows have been developed and tested. Such methods are further applicable outside of the study areas, supporting different stakeholders in the management of natural hazards of mountain areas

    A Framework to Control Functional Connectivity in the Human Brain

    Full text link
    In this paper, we propose a framework to control brain-wide functional connectivity by selectively acting on the brain's structure and parameters. Functional connectivity, which measures the degree of correlation between neural activities in different brain regions, can be used to distinguish between healthy and certain diseased brain dynamics and, possibly, as a control parameter to restore healthy functions. In this work, we use a collection of interconnected Kuramoto oscillators to model oscillatory neural activity, and show that functional connectivity is essentially regulated by the degree of synchronization between different clusters of oscillators. Then, we propose a minimally invasive method to correct the oscillators' interconnections and frequencies to enforce arbitrary and stable synchronization patterns among the oscillators and, consequently, a desired pattern of functional connectivity. Additionally, we show that our synchronization-based framework is robust to parameter mismatches and numerical inaccuracies, and validate it using a realistic neurovascular model to simulate neural activity and functional connectivity in the human brain.Comment: To appear in the proceedings of the 58th IEEE Conference on Decision and Contro

    Comparison of two 2-D numerical models for snow avalanche simulation

    Get PDF
    Snow avalanches are gravitational processes characterised by the rapid movement of a snow mass, threatening inhabitants and damaging infrastructure in mountain areas. Such phenomena are complex events, and for this reason, different numerical models have been developed to reproduce their dynamics over a given topography. In this study, we focus on the two-dimensional numerical simulation tools RAMMS::AVALANCHE and FLO-2D, aiming to compare their performance in predicting the deposition area of snow avalanches. We also aim to assess the employment of the FLO-2D simulation model, normally used in water flood or mud/debris flow simulations, in predicting the motion of snow avalanches. For this purpose, two well-documented avalanche events that occurred in the Province of Bolzano (IT) were analyzed (Knollgraben, Pichler Erschbaum avalanches). The deposition area of each case study was simulated with both models through back-analysis processes. The simulation results were evaluated primarily by comparing the simulated deposition area with the observed one through statistical indices. Subsequently, the maximum flow depth, velocity and deposition depth were also compared between the simulation results. The results showed that RAMMS::AVALANCHE generally reproduced the observed deposits better compared to FLO-2D simulation. FLO-2D provided suitable results for wet and dry snow avalanches after a meticulous calibration of the rheological parameters, since they are not those typically considered in avalanche rheology studies. The results showed that FLO-2D can be used to study the propagation of snow avalanches and could also be adopted by practitioners to define hazard areas, expanding its field of application

    Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017

    Get PDF
    Abstract Debris flows are natural hazards causing fatalities and damages to infrastructures every year. One of the current challenges is to improve the predictability of such events using simulation tools. In this direction, the paper aims to model debris-flow generation starting from the water component and then simulating the motion of the bulked solid-fluid mixture mass flow. The debris component is progressively increased through entrainment of the channel bed material. The simulation has been performed exploiting the tool r.avaflow, which implements a physically-based model (Pudasaini and Mergili, 2019) for the flow propagation and an empirical multi-phase model for the entrainment processes. The investigated study case occurred in the Northeastern Alps of Italy, near the town of Cortina d'Ampezzo (Veneto Region), during the summer of 2017. The debris flow was triggered by a heavy rainstorm that caused extreme surface runoff, leading to entrainment of sediment from the channel bed. The debris flow obstructed the bridge of a regional road and consequently flooded the adjacent areas. Different types of debris flow simulations are performed, testing four specific functions to compute the entrainment rate. The simulated results are then compared against field observations. The analysis considers the differences in volume and depth of entrainment and in the output hydrograph. We conclude that entrainment is correlated with the terrain slope, particularly if it is calculated on a smoothed digital elevation model, which dilutes a less significant local steepness. We calibrate a spatially distributed slope-dependent erosion coefficient that successfully reproduced the observed entrainment volumes. The outcomes highlight the great importance of simulating debris flow entrainment processes adopting a multiphase model, which resulted particularly suitable for an accurate reproduction of the investigated event. The results, corroborated by further verifications, can improve the reliability of challenging predictive simulations on debris flow erosion

    Stability Conditions for Cluster Synchronization in Networks of Heterogeneous Kuramoto Oscillators

    Full text link
    In this paper we study cluster synchronization in networks of oscillators with heterogenous Kuramoto dynamics, where multiple groups of oscillators with identical phases coexist in a connected network. Cluster synchronization is at the basis of several biological and technological processes; yet the underlying mechanisms to enable cluster synchronization of Kuramoto oscillators have remained elusive. In this paper we derive quantitative conditions on the network weights, cluster configuration, and oscillators' natural frequency that ensure asymptotic stability of the cluster synchronization manifold; that is, the ability to recover the desired cluster synchronization configuration following a perturbation of the oscillators' states. Qualitatively, our results show that cluster synchronization is stable when the intra-cluster coupling is sufficiently stronger than the inter-cluster coupling, the natural frequencies of the oscillators in distinct clusters are sufficiently different, or, in the case of two clusters, when the intra-cluster dynamics is homogeneous. We illustrate and validate the effectiveness of our theoretical results via numerical studies.Comment: To apper in IEEE Transactions on Control of Network System

    A new statistical method to assess potential debris flow erosion

    Get PDF
    Debris-flow erosion patterns were investigated for two adjacent catchments, Molinara and Val del Lago creeks (Eastern Alps, Trento Province, Italy), where two debris flows were triggered by an intense storm in the summer of 2010. Both basins have been inactive over the last two centuries. The debris flows were activated by channel and bank erosion under stable bed conditions before the event. The erosive process was analysed by combining a field campaign (two hundred cross sections were surveyed along the creeks) and pre- and post-event LiDAR surveys. Data were analysed by selecting morphologically-homogenous channel reaches and deriving for each reach: erosion depth, creek width, eroded volume and peak discharge. Investigating the frequency distribution of the erosion depth we found out that it follows an EV1 probability distribution. On this basis, a new approach has been proposed to predict event volumes when the expected maximum potential depth erosion is known. The procedure would be of high interest in predicting debris flow volume in mountain channels characterized by long silent periods

    Essere e Verit\ue0 nella mediazione del Logos in Joseph Mar\ue9chal

    No full text
    L\u2019ultima configurazione della dottrina di Joseph Mar\ue9chal si contraddistingue per la rigorosa delineazione di un orizzonte speculativo capace di far emergere le condizioni di possibilit\ue0 per una convergenza tra la riflessione trascendentale di Kant e la metafisica dell\u2019essere di Tommaso d\u2019Aquino. L\u2019esigenza di determinare l\u2019oggettivit\ue0 della conoscenza, e di evitare alcune aporie gnoseologiche, spinge alla rimodulazione del dinamismo intellettivo in virt\uf9 dell\u2019analisi critica e della teoria realista. Il fattore portante della ricerca viene trovato nel logos come nesso necessario di pensiero e realt\ue0; l\u2019articolazione della riscoperta della dimensione logico-ontologica implica il riconoscimento della circolarit\ue0 virtuosa di \u201ca priori\u201d e \u201ca posteriori\u201d e fornisce un punto di partenza per la metafisica. La rinnovata analisi delle cause formali, efficienti e finali si attua in sinergia con la ripresa della valenza forte (e anti-relativistica) di concetti come \u201csostanza\u201d e \u201ctrascendentale\u201d. I cardini della ricognizione risiedono nella analogia d\u2019essere - analogia di proporzionalit\ue0 e, soprattutto, di attribuzione-proporzione - e negli elementi direttamente connessi; assumono particolare rilievo il principio di identit\ue0 e non-contraddizione e la distinzione tra essenza e atto d\u2019essere. Tale quadro epistemico rende ragione del condizionato e dell\u2019esperienza, superando cos\uec la problematicit\ue0 del rapporto fenomeno-noumeno, in forza della scoperta teoretica dell\u2019incondizionato in quanto fondamento assoluto e trascendente. In questo snodo vengono tematizzate sia la creazione e la partecipazione, le quali connotano il rapporto tra il finito e l\u2019Infinito, sia la differenza ontologica radicale tra l\u2019ente, in quanto esistenza contingente, e l\u2019Essere sussistente. Questo percorso verso l\u2019Essere necessario si intreccia inoltre con le questioni della persona e della libert\ue0 e, come ricerca di Dio, profila un\u2019apertura ai temi della rivelazione e della Trinit\ue0
    corecore