196 research outputs found
Eg versus x relation from photoluminescence and electron microprobe investigations in p-type Hg1−xCdxTe (0.35 =< x =< 0.7)
Combined photoluminescence (at 10 T 300 K) and electron microprobe investigations have been carried out with HgCdTe samples grown from the melt or from solution. By exciting the samples through metallic masks with 200 μm diameter holes fixed with respect to the sample care was taken to pick-up both characteristic X-ray radiation as well as the photoluminescence from the same sample area. The Eg versus x relation determined in this way at T = 30 K has been compared with data from the interband absorption edge by other authors
Recommended from our members
Evidence for “dark charge” from photoluminescence measurements in wide InGaN quantum wells
Wide (15-25 nm) InGaN/GaN quantum wells in LED structures were studied by time-resolved photoluminescence (PL) spectroscopy and compared with narrow (2.6 nm) wells in similar LED structures. Using below-barrier pulsed excitation in the microsecond range, we measured increase and decay of PL pulses. These pulses in wide wells at low-intensity excitation show very slow increase and fast decay. Moreover, the shape of the pulses changes when we vary the separation between them. None of these effects occurs for samples with narrow wells. The unusual properties of wide wells are attributed to the presence of “dark charge” i.e., electrons and holes in the ground states. Their wave functions are spatially separated and due to negligible overlap they do not contribute to emission. However, they screen the built-in field in the well very effectively so that excited states appear with significant overlap and give rise to PL. A simple model of recombination kinetics including “dark charge” explains the observations qualitatively
Recommended from our members
Role of hole confinement in the recombination properties of InGaN quantum structures
We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as “s-shape”. We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions
Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe
High-resolution angle-resolved photoemission (ARPES) data show that a
metal-insulator Mott transition occurs at the surface of the quasi-two
dimensional compound TaSe. The transition is driven by the narrowing of the
Ta band induced by a temperature-dependent modulation of the atomic
positions. A dynamical mean-field theory calculation of the spectral function
of the half-filled Hubbard model captures the main qualitative feature of the
data, namely the rapid transfer of spectral weight from the observed
quasiparticle peak at the Fermi surface to the Hubbard bands, as the
correlation gap opens up.Comment: 4 pages, 4 figures; one modified figure, added referenc
Two-dimensional carrier density distribution inside a high power tapered laser diode
The spontaneous emission of a GaAs-based tapered laser diode emitting at lambda = 1060 nm was measured through a window in the transparent substrate in order to study the carrier density distribution inside the device. It is shown that the tapered geometry is responsible for nonuniform amplification of the spontaneous/stimulated emission which in turn influences the spatial distribution of the carriers starting from below threshold. The carrier density does not clamp at the lasing threshold and above it the device shows lateral spatial hole-burning caused by high stimulated emission along the cavity center. (C) 2011 American Institute of Physics. (doi: 10.1063/1.3596445
Desempenho de genótipos de canola (Brassica napus L.) no Nordeste do estado da Paraíba, Nordeste do Brasil.
bitstream/CNPT-2010/40338/1/p-bp65.pd
- …