1,754 research outputs found

    General practitioners' perceptions of effective health care

    Get PDF
    Objectives: To explore general practitioners' perceptions of effective health care and its application in their own practice; to examine how these perceptions relate to assumptions about clinicians' values and behaviour implicit in the evidence based medicine approach. Design: A qualitative study using semistructured interviews. Setting: Eight general practices in North Thames region that were part of the Medical Research Council General Practice Research Framework. Participants: 24 general practitioners, three from each practice. Main outcome measures: Respondents' definitions of effective health care, reasons for not practising effectively according to their own criteria, sources of information used to answer clinical questions about patients, reasons for making changes in clinical practice. Results: Three categories of definitions emerged: clinical, patient related, and resource related. Patient factors were the main reason given for not practising effectively; others were lack of time, doctors' lack of knowledge and skills, lack of resources, and "human failings." Main sources of information used in situations of clinical uncertainty were general practitioner partners and hospital doctors. Contact with hospital doctors and observation of hospital practice were just as likely as information from medical and scientific literature to bring about changes in clinical practice. Conclusions: The findings suggest that the central assumptions of the evidence based medicine paradigm may not be shared by many general practitioners, making its application in general practice problematic. The promotion of effective care in general practice requires a broader vision and a more pragmatic approach which takes account of practitioners' concerns and is compatible with the complex nature of their work

    A Hybrid Framework for Multi-Vehicle Collision Avoidance

    Full text link
    With the recent surge of interest in UAVs for civilian services, the importance of developing tractable multi-agent analysis techniques that provide safety and performance guarantees have drastically increased. Hamilton-Jacobi (HJ) reachability has successfully provided these guarantees to small-scale systems and is flexible in terms of system dynamics. However, the exponential complexity scaling of HJ reachability with respect to system dimension prevents its direct application to larger-scale problems where the number of vehicles is greater than two. In this paper, we propose a collision avoidance algorithm using a hybrid framework for N+1 vehicles through higher-level control logic given any N-vehicle collision avoidance algorithm. Our algorithm conservatively approximates a guaranteed-safe region in the joint state space of the N+1 vehicles and produces a safety-preserving controller. In addition, our algorithm does not incur significant additional computation cost. We demonstrate our proposed method in simulation.Comment: Submitted to IEEE Conference on Decision and Control, 201

    Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    Get PDF
    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate

    A New Simulation Metric to Determine Safe Environments and Controllers for Systems with Unknown Dynamics

    Full text link
    We consider the problem of extracting safe environments and controllers for reach-avoid objectives for systems with known state and control spaces, but unknown dynamics. In a given environment, a common approach is to synthesize a controller from an abstraction or a model of the system (potentially learned from data). However, in many situations, the relationship between the dynamics of the model and the \textit{actual system} is not known; and hence it is difficult to provide safety guarantees for the system. In such cases, the Standard Simulation Metric (SSM), defined as the worst-case norm distance between the model and the system output trajectories, can be used to modify a reach-avoid specification for the system into a more stringent specification for the abstraction. Nevertheless, the obtained distance, and hence the modified specification, can be quite conservative. This limits the set of environments for which a safe controller can be obtained. We propose SPEC, a specification-centric simulation metric, which overcomes these limitations by computing the distance using only the trajectories that violate the specification for the system. We show that modifying a reach-avoid specification with SPEC allows us to synthesize a safe controller for a larger set of environments compared to SSM. We also propose a probabilistic method to compute SPEC for a general class of systems. Case studies using simulators for quadrotors and autonomous cars illustrate the advantages of the proposed metric for determining safe environment sets and controllers.Comment: 22nd ACM International Conference on Hybrid Systems: Computation and Control (2019

    Half-life and spin of 60Mn^g

    Get PDF
    A value of 0.28 +/- 0.02 s has been deduced for the half-life of the ground state of 60Mn, in sharp contrast to the previously adopted value of 51 +/- 6 s. Access to the low-spin 60Mn ground state was accomplished via beta decay of the 0+ 60Cr parent nuclide. New, low-energy states in 60Mn have been identified from beta-delayed gamma-ray spectroscopy. The new, shorter half-life of 60Mn^g is not suggestive of isospin forbidden beta decay, and new spin and parity assignments of 1+ and 4+ have been adopted for the ground and isomeric beta-decaying states, respectively, of 60Mn.Comment: 13 pages, 5 figures, Accepted for publication in Phys. Rev.

    Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

    Get PDF
    The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review

    A no-singularity scenario in loop quantum gravity

    Full text link
    Canonical methods allow the derivation of effective gravitational actions from the behavior of space-time deformations reflecting general covariance. With quantum effects, the deformations and correspondingly the effective actions change, revealing dynamical implications of quantum corrections. A new systematic way of expanding these actions is introduced showing as a first result that inverse-triad corrections of loop quantum gravity simplify the asymptotic dynamics near a spacelike collapse singularity. By generic quantum effects, the singularity is removed.Comment: 10 page

    Turkdean Roman Villa, Gloucestershire: archaeological investigations 1997-1998

    Get PDF
    Before the transmission of the first ‘live’ Time Team television programme on 23 August 1997, the existence of a Roman villa near Chalkhill Barn in the parish of Turkdean, 12 miles north-east of Cirencester and 2 miles from the Fosse Way, was hardly known to the archaeological community (FIG. 1). That a Roman building did exist in this location had, however, been suspected for a number of years by the landowner, the late Mr Wilf Mustoe. Distinctive linear parchmarks suggestive of buildings had been clearly visible at ground level in the grass pasture each dry summer, and in 1976 Mr Mustoe made a measured sketch plan of them on the back of an envelope. Subsequently the sketch was drawn up into a scale plan entitled ‘Roman villa’ by Simon Goddard, a relation. There was little knowledge of the site outside of Mr Mustoe's family until it was independently ‘discovered’ by local archaeologist Roger Box in August 1996 whilst fortuitously flying over the site in a helicopter. In the evening light Mr Box instantly recognised the parchmarks of an unmistakable Roman villa and took a series of photographs (FIG. 2). Mr Box showed his photographs to Mr Mustoe, and with his agreement wrote to Time Team suggesting that this would be an excellent site for a television programme. Arrangements were duly set in place and the evidence of the cropmarks was confirmed by a trial geophysical survey in March 199

    An evaluation of the epidemiology of medication discrepancies and clinical significance of medicines reconciliation in children admitted to hospital.

    Get PDF
    To determine the incidence of unintended medication discrepancies in paediatric patients at the time of hospital admission; evaluate the process of medicines reconciliation; assess the benefit of medicines reconciliation in preventing clinical harm
    corecore