548 research outputs found

    The Effect of Various Treatments on Microorganisms in the Soil under a Five-Year Rotation

    Get PDF
    It is generally conceded now that microorganisms play a large part in the transformations through which various plant food constituents pass, in the soil. They are the agents which are chiefly responsible for the production of available plant food. They break down organic matter, liberating the plant food constituents contained therein. The products of this decomposition react with the complex mineral soil constituents and change them into soluble, available compounds. Certain microorganisms also have the ability of utilizing the free nitrogen of the atmosphere, fixing it in the soil, to serve later for the feeding of plants

    Ground state magnetic dipole moment of 35K

    Full text link
    The ground state magnetic moment of 35K has been measured using the technique of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K nuclei were produced following the reaction of a 36Ar primary beam of energy 150 MeV/nucleon incident on a Be target. The spin polarization of the 35K nuclei produced at 2 degrees relative to the normal primary beam axis was confirmed. Together with the mirror nucleus 35S, the measurement represents the heaviest T = 3/2 mirror pair for which the spin expectation value has been obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2 known mirror moments and the slope and intercept are consistent with the previous analysis of T = 1/2 mirror pairs.Comment: 14 pages, 5 figure

    Half-life and spin of 60Mn^g

    Get PDF
    A value of 0.28 +/- 0.02 s has been deduced for the half-life of the ground state of 60Mn, in sharp contrast to the previously adopted value of 51 +/- 6 s. Access to the low-spin 60Mn ground state was accomplished via beta decay of the 0+ 60Cr parent nuclide. New, low-energy states in 60Mn have been identified from beta-delayed gamma-ray spectroscopy. The new, shorter half-life of 60Mn^g is not suggestive of isospin forbidden beta decay, and new spin and parity assignments of 1+ and 4+ have been adopted for the ground and isomeric beta-decaying states, respectively, of 60Mn.Comment: 13 pages, 5 figures, Accepted for publication in Phys. Rev.

    Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

    Full text link
    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR

    Proton Drip-Line Calculations and the Rp-process

    Get PDF
    One-proton and two-proton separation energies are calculated for proton-rich nuclei in the region A=4175 A=41-75 . The method is based on Skyrme Hartree-Fock calculations of Coulomb displacement energies of mirror nuclei in combination with the experimental masses of the neutron-rich nuclei. The implications for the proton drip line and the astrophysical rp-process are discussed. This is done within the framework of a detailed analysis of the sensitivity of rp process calculations in type I X-ray burst models on nuclear masses. We find that the remaining mass uncertainties, in particular for some nuclei with N=ZN=Z, still lead to large uncertainties in calculations of X-ray burst light curves. Further experimental or theoretical improvements of nuclear mass data are necessary before observed X-ray burst light curves can be used to obtain quantitative constraints on ignition conditions and neutron star properties. We identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table

    Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

    Get PDF
    The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review

    Half Life of the Doubly-magic r-Process Nucleus 78Ni

    Full text link
    Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that is also an important waiting point in the r-process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110 (+100 -60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128 (+27 -33) ms, and more precise half-lives were deduced for 75Ni and 76Ni of 344 (+20 -24) ms and 238 (+15 -18) ms respectively.Comment: 4 pages, 3 figure

    Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Get PDF
    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC
    corecore