41 research outputs found

    Aggressiveness and Metastatic Potential of Breast Cancer Cells Co-Cultured with Preadipocytes and Exposed to an Environmental Pollutant Dioxin: An in Vitro and in Vivo Zebrafish Study

    No full text
    International audienceBACKGROUND: Breast cancer (BC) is a major public health concern, and its prognosis is very poor once metastasis occurs. The tumor microenvironment and chemical pollution have been suggested recently to contribute, independently, to the development of metastatic cells. The BC microenvironment consists, in part, of adipocytes and preadipocytes in which persistent organic pollutants (POPs) can be stored. OBJECTIVES: We aimed to test the hypothesis that these two factors (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an extensively studied, toxic POP and the microenvironment) may interact to increase tumor aggressiveness. METHODS: We used a co-culture model using BC MCF-7 cells or MDA-MB-231 cells together with hMADS preadipocytes to investigate the contribution of the microenvironment and 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD on BC cells. Global differences were characterized using a highthroughput proteomic assay. Subsequently we measured the BC stem cell-like activity, analyzed the cell morphology, and used a zebrafish larvae model to study the metastatic potential of the BC cells. RESULTS: We found that coexposure to TCDD and preadipocytes modified BC cell properties; moreover, it induced the expression of ALDH1A3, a cancer stem cell marker, and the appearance of giant cancer cells with cell-in-cell structures (CICs), which are associated with malignant metastatic progression, that we demonstrated in vivo. DISCUSSION: The results of our study using BC cell lines co-cultured with preadipocytes and a POP and an in vivo zebrafish model of metastasis suggest that the interactions between BC cells and their microenvironment could affect their invasive or metastatic potential

    Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor

    No full text
    International audienceThe aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research

    Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration

    No full text
    International audienceThe regulation of cell migration is a key factor for the dissemination of metastatic cells during tumor progression. Aquaporins are membrane channels which allow transmembrane fluxes of water and glycerol in cells in a variety of mammalian tissues. Here, we show that AQP3, which has been incriminated in cancer progression, is regulated by the AhR, or dioxin receptor. AhR is a transcription factor which is triggered in response to environmental pollutants and it has been shown to regulate several cellular processes including cell migration and plasticity. In vivo, upon exposure to the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the expression of AQP3 is increased significantly in several murine tissues including the liver. In vitro, treatment of human HepG2 cells with TCDD also increased the expression of AQP3 mRNA and protein. These effects resulted from the activation of AhR as shown by RNA interference, chromatin immunoprecipitation and the use of several AhR ligands. Immunofluorescence and real-time analysis of cell migration (XCelligence) demonstrated that knockdown of AQP3 mRNA using small interfering RNA impairs the remodeling of cell shape and the triggering of cell migration that is induced by TCDD. Our work reveals, for the first time, a link between exposure to pollutant and the induction of an aquaporin which has been suspected to play a role during metastasis

    Aryl hydrocarbon receptor upregulates IL-1ÎČ expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure

    No full text
    International audienceThe AhR is a cytosolic ligand-dependent transcription factor activated by both endogenous and exogenous chemicals. It can regulate expression of many target genes including some inflammatory cytokines and chemokines. To date AhR implication in the regulation of inflammatory cytokines and chemokines at human cerebral endothelium has not been addressed. In the present study, we investigated whether AhR could regulate the expression of two pro-inflammatory cytokines and one chemokine i.e. IL-1ÎČ, IL-6 and IL-8 in the hCMEC/D3 human cerebral microvascular endothelial cell line. Exposure to TCDD increased IL-1ÎČ mRNA expression levels in hCMEC/D3. By using small interfering RNA against AhR we demonstrated that TCDD effects on IL-1ÎČ expression were mediated through AhR activation. Regarding IL-6 and IL-8, TCDD exposure had little or no effect on their mRNA levels in hCMEC/D3. In conclusion, our findings suggest that AhR-mediated IL-1ÎČ regulation in cerebral endothelium could induce BBB breakdown and contribute to the pathogenesis of a variety of neurologic disorders

    Infering an ontology of single cell motions from high-throughput microscopy data

    No full text
    International audienceCellular motility is a fundamental biological process. Progress in the fields of gene silencing and high-throughput (HT) microscopy provide us with the tools to study its molecular basis and potential perturbators. The primary contribution of this paper is to present MotIW, a generic workflow for single cell motility study in HT time-lapse screening data. We successfully apply it to a simulated screen, as well as a genome-wide screen. Furthermore, MotIW enables the identification of eigth motility patterns into which all trajectories from this dataset divide up into, without any prior model of cell motion

    Supplementary file 3 from Costs of molecular adaptation to the chemical exposome: a focus on xenobiotic metabolism pathways

    No full text
    Organisms adapt to their environment through different pathways. In vertebrates, xenobiotics are detected, metabolized and eliminated through the inducible xenobiotic-metabolizing pathways (XMP) which can also generate reactive toxic intermediates. In this review, we will discuss the impacts of the chemical exposome complexity on the balance between detoxication and side effects. There is a large discrepancy between the limited number of proteins involved in these pathways (few dozens) and the diversity and complexity of the chemical exposome (tens of thousands of chemicals). Several XMP proteins have a low specificity which allows them to bind and/or metabolize a large number of chemicals. This leads to undesired consequences, such as cross-inhibition, inefficient metabolism, release of toxic intermediates, etc. Furthermore, several XMP proteins have endogenous functions that may be disrupted upon exposure to exogenous chemicals. The gut microbiome produces a very large number of metabolites that enter the body and are part of the chemical exposome. It can metabolize xenobiotics and either eliminate them or lead to toxic derivatives. The complex interactions between chemicals of different origins will be illustrated by the diverse roles of the Aryl hydrocarbon receptor which binds and transduces the signals of a large number of xenobiotics, microbiome metabolites, dietary chemicals and endogenous compounds.This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’

    Impact of mixtures of persistent organic pollutants on breast cancer aggressiveness

    No full text
    Introduction: Breast cancer (BC) is frequent with a poor prognosis in case of metastasis. The role of the environment has been poorly evaluated in its progression. We searched to assess whether a mixture of pollutants could be responsible of BC aggressiveness. Methods: Patients undergoing surgery for their BC were prospectively included in the METAPOP cohort. Forty-two POPs were extracted, among them 17 dioxins (PCDD/F), 16 polychlorobiphenyls (PCB), 8 polybromodiphenylethers (PBDE) and 2,2â€Č,4,4â€Č,5,5â€Č-hexabromobiphenyl (PBB153) were measured in the adipose tissue surrounding the tumor. BC aggressiveness was defined using tumor size and metastasis (distant or lymph nodes). Two complementary models were used to evaluate the impact of the mixture of pollutants: the BKMR (Bayesian Kernel machine regression) and WQS (weighted quantile sum regression) models. The WQS estimates the weight (positive or negative) of a certain chemical based on its quantile and the BKMR model applies a kernel-based approach to estimate posterior inclusion probabilities. The sub-group of patients with a body mass index (BMI) > 22 kg/ m2 was also analyzed. Results: Ninety-one patients were included. Of these, 38 patients presented a metastasis, and the mean tumor size was 25.4 mm. The mean BMI was 24.5 kg/m2 (+/- 4.1). No statistical association was found in the general population. However, in patients with a BMI > 22 kg/ m2, our mixture was positively associated with tumor size (OR: 9.73 95 %CI: 1.30–18.15) and metastasis (OR = 3.98 95 %CI = 1.09–17.53) using the WQS model. Moreover, using the BKMR model on chemical families, dioxin like chemicals and PCDD were associated with a higher risk of metastasis. Discussion: These novel findings identified a mixture associated with breast cancer aggressiveness in patients with a BMI > 22 kg/ m2
    corecore