3,047 research outputs found

    The Resonant Cavity Radiator (RCR)

    Get PDF
    The design of the resonant cavity radiator (RCR) is compared to that of the slotted waveguide array in terms of efficiency, weight, and structural integrity. It is shown that the RCR design has three significant potentials over the slotted waveguide array: (1) improvement in efficiency; (2) lighter weight; and (3) simpler structure which allows the RCR to be integrated with the RF tube to alleviate thermal interface problems

    Probability-Changing Cluster Algorithm: Study of Three-Dimensional Ising Model and Percolation Problem

    Full text link
    We present a detailed description of the idea and procedure for the newly proposed Monte Carlo algorithm of tuning the critical point automatically, which is called the probability-changing cluster (PCC) algorithm [Y. Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86} (2001) 572]. Using the PCC algorithm, we investigate the three-dimensional Ising model and the bond percolation problem. We employ a refined finite-size scaling analysis to make estimates of critical point and exponents. With much less efforts, we obtain the results which are consistent with the previous calculations. We argue several directions for the application of the PCC algorithm.Comment: 6 pages including 8 eps figures, to appear in J. Phys. Soc. Jp

    Renormalization Group Approach to Einstein Equation in Cosmology

    Get PDF
    The renormalization group method has been adapted to the analysis of the long-time behavior of non-linear partial differential equation and has demonstrated its power in the study of critical phenomena of gravitational collapse. In the present work we apply the renormalization group to the Einstein equation in cosmology and carry out detailed analysis of renormalization group flow in the vicinity of the scale invariant fixed point in the spherically symmetric and inhomogeneous dust filled universe model.Comment: 16 pages including 2 eps figures, RevTe

    Peculiar from-Edge-to-Interior Spin Freezing in a Magnetic Dipolar Cube

    Full text link
    By molecular dynamics simulation, we have investigated classical Heisenberg spins, which are arrayed on a finite simple cubic lattice and interact with each other only by the dipole-dipole interaction, and have found its peculiar it from-Edge-to-interior freezing process. As the temperature is decreased, spins on each edge predominantly start to freeze in a ferromagnetic alignment parallel to the edge around the corresponding bulk transition temperature, then from each edges grow domains with short-range orders similar to the corresponding bulk orders, and the system ends up with a unique multi-domain ground state at the lowest temperature. We interpret this freezing characteristics is attributed to the anisotropic and long-range nature of the dipole-dipole interaction combined with a finite-size effect.Comment: 11 pages 5 figure

    Renormalization Group Approach to Cosmological Back Reaction Problems

    Get PDF
    We investigated the back reaction of cosmological perturbations on the evolution of the universe using the second order perturbation of the Einstein's equation. To incorporate the back reaction effect due to the inhomogeneity into the framework of the cosmological perturbation, we used the renormalization group method. The second order zero mode solution which appears by the non-linearities of the Einstein's equation is regarded as a secular term of the perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant. For a dust dominated universe, using the second order gauge invariant quantity, we derived the renormalization group equation which determines the effective dynamics of the Friedman-Robertson-Walker universe with the back reaction effect in a gauge invariant manner. We obtained the solution of the renormalization group equation and found that perturbations of the scalar mode and the long wavelength tensor mode works as positive spatial curvature, and the short wavelength tensor mode as radiation fluid.Comment: 18 pages, revtex, to appear in Phys. Rev.

    Long-wavelength approximation for string cosmology with barotropic perfect fluid

    Full text link
    The field equations derived from the low energy string effective action with a matter tensor describing a perfect fluid with a barotropic equation of state are solved iteratively using the long-wavelength approximation, i.e. the field equations are expanded by the number of spatial gradients. In the zero order, a quasi-isotropic solution is presented and compared with the general solution of the pure dilaton gravity. Possible cosmological models are analyzed from the point of view of the pre-big bang scenario. The second order solutions are found and their growing and decaying parts are studied.Comment: 19 pages, 1 figur

    Inhomogeneity of Spatial Curvature for Inflation

    Get PDF
    We study how the initial inhomogeneities of the spatial curvature affect the onset of inflation in the closed universe. We consider a cosmological model which contains a radiation and a cosmological constant. In order to treat the inhomogeneities in the closed universe, we improve the long wavelength approximation such that the non-small spatial curvature is tractable in the lowest order. Using the improved scheme, we show how large inhomogeneities of the spatial curvature prevent the occurrence of inflation.Comment: 17 pages, revtex, 6 figures included using eps

    Star Formation Efficiency in the Central 1 kpc Region of Early-Type Spiral Galaxies

    Get PDF
    It has been reported recently that there are some early-type spiral (Sa--Sab) galaxies having evident star-forming regions which concentrate in their own central 1-kpc. In such central region, is the mechanism of the star formation distinct from that in disks of spiral galaxies? To reveal this, we estimate the star formation efficiency (SFE) in this central 1-kpc star-forming region of some early-type spiral galaxies, taking account of the condition for this 1-kpc region to be self-gravitating. Using two indicators of present star formation rate (Hα\alpha and infrared luminosity), we estimate the SFE to be a few percents. This is equivalent to the observational SFE in the disks of late-type spiral (Sb--) galaxies. This coincidence may support the universality of the mean SFE of spiral galaxies reported in the recent studies. That is, we find no evidence of distinct mechanism of the star formation in the central 1-kpc region of early-type galaxies. Also, we examine the structure of the central star-forming region, and discuss a method for estimating the mass of star-forming regions.Comment: accepted by A

    Evolution of speckle during spinodal decomposition

    Full text link
    Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is known to grow in time τ\tau as R=[Bτ]nR = [B \tau]^n with n=1/3, where B is a constant. The intensities of individual speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector k{\bf k} can be collapsed onto a scaling function Cov(δt,tˉ)Cov(\delta t,\bar{t}), where δt=k1/nB∣τ2−τ1∣\delta t = k^{1/n} B |\tau_2-\tau_1| and tˉ=k1/nB(τ1+τ2)/2\bar{t} = k^{1/n} B (\tau_1+\tau_2)/2. Both analytically and numerically, the covariance is found to depend on δt\delta t only through δt/tˉ\delta t/\bar{t} in the small-tˉ\bar{t} limit and δt/tˉ1−n\delta t/\bar{t} ^{1-n} in the large-tˉ\bar{t} limit, consistent with a simple theory of moving interfaces that applies to any universality class described by a scalar order parameter. The speckle-intensity covariance is numerically demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an analytic scaling function is obtained for large tˉ.\bar{t}. In addition, the two-time, two-point order-parameter correlation function is found to scale as C(r/(Bnτ12n+τ22n),τ1/τ2)C(r/(B^n\sqrt{\tau_1^{2n}+\tau_2^{2n}}),\tau_1/\tau_2), even for quite large distances rr. The asymptotic power-law exponent for the autocorrelation function is found to be λ≈4.47\lambda \approx 4.47, violating an upper bound conjectured by Fisher and Huse.Comment: RevTex: 11 pages + 12 figures, submitted to PR
    • …
    corecore