5,160 research outputs found

    The Resonant Cavity Radiator (RCR)

    Get PDF
    The design of the resonant cavity radiator (RCR) is compared to that of the slotted waveguide array in terms of efficiency, weight, and structural integrity. It is shown that the RCR design has three significant potentials over the slotted waveguide array: (1) improvement in efficiency; (2) lighter weight; and (3) simpler structure which allows the RCR to be integrated with the RF tube to alleviate thermal interface problems

    Probability-Changing Cluster Algorithm: Study of Three-Dimensional Ising Model and Percolation Problem

    Full text link
    We present a detailed description of the idea and procedure for the newly proposed Monte Carlo algorithm of tuning the critical point automatically, which is called the probability-changing cluster (PCC) algorithm [Y. Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86} (2001) 572]. Using the PCC algorithm, we investigate the three-dimensional Ising model and the bond percolation problem. We employ a refined finite-size scaling analysis to make estimates of critical point and exponents. With much less efforts, we obtain the results which are consistent with the previous calculations. We argue several directions for the application of the PCC algorithm.Comment: 6 pages including 8 eps figures, to appear in J. Phys. Soc. Jp

    Renormalization Group Approach to Einstein Equation in Cosmology

    Get PDF
    The renormalization group method has been adapted to the analysis of the long-time behavior of non-linear partial differential equation and has demonstrated its power in the study of critical phenomena of gravitational collapse. In the present work we apply the renormalization group to the Einstein equation in cosmology and carry out detailed analysis of renormalization group flow in the vicinity of the scale invariant fixed point in the spherically symmetric and inhomogeneous dust filled universe model.Comment: 16 pages including 2 eps figures, RevTe

    Distance-Redshift in Inhomogeneous Omega0=1Omega_0=1 Friedmann-Lemaitre-Robertson-Walker Cosmology

    Full text link
    Distance--redshift relations are given in terms of associated Legendre functions for partially filled beam observations inspatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies. These models are dynamically pressure-free, flat FLRW on large scales but, due to mass inhomogeneities, differ in their optical properties. The partially filled beam area-redshift equation is a Lame′^{\prime} equation for arbitrary FLRW and is shown to simplify to the associated Legendre equation for the spatially flat, i.e. Ω0=1\Omega_0=1 case. We fit these new analytic Hubble curves to recent supernovae (SNe) data in an attempt to determine both the mass parameter Ωm\Omega_m and the beam filling parameter ν\nu. We find that current data are inadequate to limit ν\nu. However, we are able to estimate what limits are possible when the number of observed SNe is increased by factor of 10 or 100, sample sizes achievable in the near future with the proposed SuperNova Acceleration Probe satellite.Comment: 9 pages, 3 figure

    Observation of Antinormally Ordered Hanbury-Brown--Twiss Correlations

    Full text link
    We have measured antinormally ordered Hanbury-Brown--Twiss correlations for coherent states of electromagnetic field by using stimulated parametric down-conversion process. Photons were detected by stimulated emission, rather than by absorption, so that the detection responded not only to actual photons but also to zero-point fluctuations via spontaneous emission. The observed correlations were distinct from normally ordered ones as they showed excess positive correlations, i.e., photon bunching effects, which arose from the thermal nature of zero-point fluctuations.Comment: 5 pages, 3 figures, to appear in Physical Review Letter

    Multi-qubit compensation sequences

    Full text link
    The Hamiltonian control of n qubits requires precision control of both the strength and timing of interactions. Compensation pulses relax the precision requirements by reducing unknown but systematic errors. Using composite pulse techniques designed for single qubits, we show that systematic errors for n qubit systems can be corrected to arbitrary accuracy given either two non-commuting control Hamiltonians with identical systematic errors or one error-free control Hamiltonian. We also examine composite pulses in the context of quantum computers controlled by two-qubit interactions. For quantum computers based on the XY interaction, single-qubit composite pulse sequences naturally correct systematic errors. For quantum computers based on the Heisenberg or exchange interaction, the composite pulse sequences reduce the logical single-qubit gate errors but increase the errors for logical two-qubit gates.Comment: 9 pages, 5 figures; corrected reference formattin

    Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures

    Full text link
    We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.Comment: 7 pages, 6 figures, 5 table
    • …
    corecore