2,940 research outputs found
First Detection of Ar-K Line Emission from the Cygnus Loop
We observed the Cygnus Loop with XMM-Newton (9 pointings) and Suzaku (32
pointings) between 2002 and 2008. The total effective exposure time is 670.2
ks. By using all of the available data, we intended to improve a
signal-to-noise ratio of the spectrum. Accordingly, the accumulated spectra
obtained by the XIS and the EPIC show some line features around 3 keV that are
attributed to the S He and Ar He lines, respectively. Since the
Cygnus Loop is an evolved (10,000 yr) supernova remnant whose temperature
is relatively low (1 keV) compared with other young remnants, its spectrum
is generally faint above 3.0 keV, no emission lines, such as the Ar-K line have
ever been detected. The detection of the Ar-K line is the first time and we
found that its abundance is significantly higher than that of the solar value;
9.0 and 8.4 (in units of solar), estimated from
the XIS and the EPIC spectra, respectively. We conclude that the Ar-K line
originated from the ejecta of the Cygnus Loop. Follow-up X-ray observations to
tightly constrain the abundances of Ar-rich ejecta will be useful to accurately
estimate the progenitor's mass.Comment: 12 pages, 9 figures, accepted for publication in PAS
Nucleosynthesis in Core-Collapse Supernovae and GRB--Metal-Poor Star Connection
We review the nucleosynthesis yields of core-collapse supernovae (SNe) for
various stellar masses, explosion energies, and metallicities. Comparison with
the abundance patterns of metal-poor stars provides excellent opportunities to
test the explosion models and their nucleosynthesis. We show that the abundance
patterns of extremely metal-poor (EMP) stars, e.g., the excess of C, Co, Zn
relative to Fe, are in better agreement with the yields of hyper-energetic
explosions (Hypernovae, HNe) rather than normal supernovae.
We note that the variation of the abundance patterns of EMP stars are related
to the diversity of the Supernova-GRB connection. We summarize the diverse
properties of (1) GRB-SNe, (2) Non-GRB HNe/SNe, (3) XRF-SN, and (4) Non-SN GRB.
In particular, the Non-SN GRBs (dark hypernovae) have been predicted in order
to explain the origin of C-rich EMP stars. We show that these variations and
the connection can be modeled in a unified manner with the explosions induced
by relativistic jets. Finally, we examine whether the most luminous supernova
2006gy can be consistently explained with the pair-instability supernova model.Comment: 15 pages, 9 figures. To appear in "Supernova 1987A: 20 Years After:
Supernovae and Gamma-Ray Bursters", eds. S. Immler, K. Weiler, & R. McCray
(American Institute of Physics) (2007
The Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars as Nucleosynthetic Probes of the Early Universe
The connection between the long GRBs and Type Ic Supernovae (SNe) has
revealed the interesting diversity: (i) GRB-SNe, (ii) Non-GRB Hypernovae (HNe),
(iii) X-Ray Flash (XRF)-SNe, and (iv) Non-SN GRBs (or dark HNe). We show that
nucleosynthetic properties found in the above diversity are connected to the
variation of the abundance patterns of extremely-metal-poor (EMP) stars, such
as the excess of C, Co, Zn relative to Fe. We explain such a connection in a
unified manner as nucleosynthesis of hyper-aspherical (jet-induced) explosions
Pop III core-collapse SNe. We show that (1) the explosions with large energy
deposition rate, , are observed as GRB-HNe and their yields
can explain the abundances of normal EMP stars, and (2) the explosions with
small are observed as GRBs without bright SNe and can be
responsible for the formation of the C-rich EMP (CEMP) and the hyper metal-poor
(HMP) stars. We thus propose that GRB-HNe and the Non-SN GRBs (dark HNe) belong
to a continuous series of BH-forming stellar deaths with the relativistic jets
of different .Comment: 8 pages, 6 figures. To appear in "Massive Stars as Cosmic Engines",
Proceedings of IAU Symposium 250 (December 2007, Kauai), eds. F. Bresolin,
P.A. Crowther, & J. Puls (Cambridge Univ. Press
The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of A Strongly Magnetized Neutron Star
Late phase nebular spectra and photometry of Type Ib Supernova (SN) 2005bf
taken by the Subaru telescope at ~ 270 and ~ 310 days since the explosion are
presented. Emission lines ([OI]6300, 6363, [CaII]7291, 7324, [FeII]7155) show
the blueshift of ~ 1,500 - 2,000 km s-1. The [OI] doublet shows a doubly-peaked
profile. The line luminosities can be interpreted as coming from a blob or jet
containing only ~ 0.1 - 0.4 Msun, in which ~ 0.02 - 0.06 Msun is 56Ni
synthesized at the explosion. To explain the blueshift, the blob should either
be of unipolar moving at the center-of-mass velocity v ~ 2,000 - 5,000 km s-1,
or suffer from self-absorption within the ejecta as seen in SN 1990I. In both
interpretations, the low-mass blob component dominates the optical output both
at the first peak (~ 20 days) and at the late phase (~ 300 days). The low
luminosity at the late phase (the absolute R magnitude M_R ~ -10.2 mag at ~ 270
days) sets the upper limit for the mass of 56Ni < ~ 0.08 Msun, which is in
contradiction to the value necessary to explain the second, main peak
luminosity (M_R ~ -18.3 mag at ~ 40 days). Encountered by this difficulty in
the 56Ni heating model, we suggest an alternative scenario in which the heating
source is a newly born, strongly magnetized neutron star (a magnetar) with the
surface magnetic field Bmag ~ 10^{14-15} gauss and the initial spin period P0 ~
10 ms. Then, SN 2005bf could be a link between normal SNe Ib/c and an X-Ray
Flash associated SN 2006aj, connected in terms of Bmag and/or P0.Comment: 16 pages, 12 figures. Accepted by the Astrophysical Journa
Dynamical Susceptibility in KDP-type Crysals above and below Tc II
The path probability method (PPM) in the tetrahedron-cactus approximation is
applied to the Slater-Takagi model with dipole-dipole interaction for
KH2PO4-type hydrogen-bonded ferroelectric crystals in order to derive a small
dip structure in the real part of dynamical susceptibility observed at the
transition temperature Tc. The dip structure can be ascribed to finite
relaxation times of electric dipole moments responsible for the first order
transition with contrast to the critical slowing down in the second order
transition. The light scattering intensity which is related to the imaginary
part of dynamical susceptibility is also calculated above and below the
transition temperature and the obtained central peak structure is consistent
with polarization fluctuation modes in Raman scattering experiments.Comment: 8 pages, 11 figure
Review of CFD Guidelines for Dispersion Modeling
This is the review of CFD (Computational Fluid Dynamics) guidelines for dispersion modeling in the USA, Japan and Germany. Most parts of this review are based on the short report of the special meeting on CFD Guidelines held at the International Symposium on Computational Wind Engineering (CWE2014), University of Hamburg, June 2014. The objective of this meeting was to introduce and discuss the action program to make worldwide guidelines of CFD gas-dispersion modeling. The following six gas-dispersion guidelines including Verification and Validation (V&V) schemes are introduced by each author; (1) US CFD guidelines; (2) COST/ES1006; (3) German VDI (Verein Deutscher Ingenieure) guidelines; (4) Atomic Energy Society of Japan; (5) Japan Society of Atmospheric Environment; (6) Architectural Institute of Japan. All guidelines were summarized in the same format table shown in the main chapters in order to compare them with each other. In addition to the summary of guidelines, the overview of V&V schemes and many guidelines of CFD modeling in the USA are explained
Continuation of a physical model of brass instrument: application to trumpet categorization
International audienceThe system formed by the couple {player-trumpet} falls into the class of non-linear dynamical systems likely to be studied using different numerical tools such as numerical continuation methods. In this study we illustrate the interest of this approach for the categorization of Bb trumpets in the space of some performance descriptors obtained from continuation by the ANM method combined to the Harmonic Balance Method (HBM)
Nucleosynthesis in Black-Hole-Forming Supernovae and Abundance Patterns of Extremely Metal-Poor Stars
Stars more massive than 20 - 25 \ms form a black hole at the end of
their evolution. Stars with non-rotating black holes are likely to collapse
"quietly" ejecting a small amount of heavy elements (Faint supernovae). In
contrast, stars with rotating black holes are likely to give rise to very
energetic supernovae (Hypernovae). We present distinct nucleosynthesis features
of these two types of "black-hole-forming" supernovae. Nucleosynthesis in
Hypernovae is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and
smaller (Mn,Cr)/Fe than normal supernovae, which can explain the observed trend
of these ratios in extremely metal-poor stars. Nucleosynthesis in Faint
supernovae is characterized by a large amount of fall-back. We show that the
abundance pattern of the recently discovered most Fe-poor star, HE0107-5240,
and other extremely metal-poor carbon-rich stars are in good accord with those
of black-hole-forming supernovae, but not pair-instability supernovae. This
suggests that black-hole-forming supernovae made important contributions to the
early Galactic (and cosmic) chemical evolution. Finally we discuss the nature
of First (Pop III) Stars.Comment: 12 pages, 9 figures. To appear in "Carnegie Observatories
Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003, eds.
A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories
- …