56 research outputs found

    Static and dynamic mechanical characterization of cross-linked polyethylene foams: The effect of density

    Get PDF

    Clinical significance of genetic aberrations in secondary acute myeloid leukemia

    Get PDF
    The study aimed to identify genetic lesions associated with secondary acute myeloid leukemia (sAML) in comparison with AML arising de novo (dnAML) and assess their impact on patients' overall survival (OS). High-resolution genotyping and loss of heterozygosity mapping was performed on DNA samples from 86 sAML and 117 dnAML patients, using Affymetrix Genome-Wide Human SNP 6.0 arrays. Genes TP53, RUNX1, CBL, IDH1/2, NRAS, NPM1, and FLT3 were analyzed for mutations in all patients. We identified 36 recurrent cytogenetic aberrations (more than five events). Mutations in TP53, 9pUPD, and del7q (targeting CUX1 locus) were significantly associated with sAML, while NPM1 and FLT3 mutations associated with dnAML. Patients with sAML carrying TP53 mutations demonstrated lower 1-year OS rate than those with wild-type TP53 (14.3% +/- 9.4% vs. 35.4% +/- 7.2%; P = 0.002), while complex karyotype, del7q (CUX1) and del7p (IKZF1) showed no significant effect on OS. Multivariate analysis confirmed that mutant TP53 was the only independent adverse prognostic factor for OS in sAML (hazard ratio 2.67; 95% CI: 1.335.37; P = 0.006). Patients with dnAML and complex karyotype carried sAML-associated defects (TP53 defects in 54.5%, deletions targeting FOXP1 and ETV6 loci in 45.4% of the cases). We identified several co-occurring lesions associated with either sAML or dnAML diagnosis. Our data suggest that distinct genetic lesions drive leukemogenesis in sAML. High karyotype complexity of sAML patients does not influence OS. Somatic mutations in TP53 are the only independent adverse prognostic factor in sAML. Patients with dnAML and complex karyotype show genetic features associated with sAML and myeloproliferative neoplasms. Am. J. Hematol., 2012

    Fibulin-3 is necessary to prevent cardiac rupture following myocardial infarction

    Get PDF
    Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1−/−) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3–6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct

    Заболеваемость раком предстательной железы, почки и мочевого пузыря в России и Омской области

    Get PDF
    Comparative analysis of morbidity of prostate cancer, kidney cancer, bladder cancer in Russia and Omsk region for period since 1998 up to 2005 showed, that prostate adenocarcinoma is dominating among all urological cancers. Morbidity increase of prostate cancer for this period amounted to 103,6%. Kidney cancer took a second place (16%). Morbidity of bladder cancer reduced and (-6,2%) — negative dynamics was revealed. As a whole year-on-year increase of morbidity of cancer in Omsk region constituted 2,5%.

    Fibulin-3 is necessary to prevent cardiac rupture following myocardial infarction

    Get PDF
    Published online: 11 September 2023Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1-/-) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3-6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct.Lucy A. Murtha, Sean A. Hardy, Nishani S. Mabotuwana, Mark J. Bigland, Taleah Bailey, Kalyan Raguram, Saifei Liu, Doan T. Ngo, Aaron L. Sverdlov, Tamara Tomin, Ruth Birner, Gruenberger, Robert D. Hume, Siiri E. Iismaa, David T. Humphreys, Ralph Patrick, James J. H. Chong, Randall J. Lee, Richard P. Harvey, Robert M. Graham, Peter P. Rainer and Andrew J. Boyl

    Adjoint Parabolized Stability Equations for Receptivity Prediction

    No full text
    This paper presents the Adjoint Parabolized Stability Equations (APSE) which are used to predict the receptivity of shear layers to a variety of disturbances. Results from the APSE are first carefully validated against solutions of the Adjoint Navier--Stokes (ANS) equations which demonstrates that APSE is an accurate and e#ecient means of predicting receptivity. Then APSE is used to document the nonparallel receptivity characteristics of both Blasius and Falkner--Skan boundary layers for two-dimensional and oblique Tollmein--Schlichting (TS) instabilities. These results are compared to receptivity predictions based on local parallel theory in order to establish the e#ects of mean boundary layer growth on receptivity. In general, the inclusion of nonparallel effects for the receptivity prediction of TS instabilities is found to be small under all conditions. Comparing results from Blasius and Falkner--Skan base flows shows that adverse pressure gradients tend to reduce receptivity while favorable pressure gradients lead to an increase in receptivity. This is in contrast to the well known e#ects of pressure gradient on TS instability growth rates. Likewise, our investigations for three-dimensional disturbances also show that oblique modes have greater receptivity than two dimensional waves, again in contrast to the e#ects of obliquity on instability growth rates. In general there is a trade-o# between receptivity and instability -- the stronger the instability the weaker the receptivity
    corecore