268 research outputs found

    Quantum Fluctuations of Black Hole Geometry

    Full text link
    By using the minisuperspace model for the interior metric ofstatic black holes, we solve the Wheeler-DeWitt equation to study quantum mechanics of the horizon geometry. Our basic idea is to introduce the gravitational mass and the expansions of null rays as quantum operators. Then, the exact wave function is found as a mass eigenstate, and the radius of the apparent horizon is quantum-mechanically defined. In the evolution of the metric variables, the wave function changes from a WKB solution giving the classical trajectories to a tunneling solution. By virtue of the quantum fluctuations of the metric evolution beyond the WKB approximation, we can observe a static black hole state with the apparent horizon separating from the event horizon.Comment: 18 pages, DPNU-93-3

    Distortion of Schwarzschild-anti-de Sitter black holes to black strings

    Full text link
    Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass mm. Under the approximation such that mm is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference.Comment: 13 pages, accepted for publication in Physical Review

    Symmetries of Heterotic String Theory

    Get PDF
    We study the symmetries of the two dimensional Heterotic string theory by following the approach of Kinnersley et al for the study of stationary-axially symmetric Einstein-Maxwell equations. We identify the finite dimensional groups G′G' and H′H' for the Einstein-Maxwell equations. We also give the constructions for the infinite number of conserved currents and the affine o^(8,24)\hat{o}(8, 24) symmetry algebra in this formulation. The generalized Ehlers and Harrison transformations are identified and a parallel between the infinite dimensional symmetry algebra for the heterotic string case with sl^(3,R)\hat{sl}(3, R) that arise in the case of Einstein-Maxwell equations is pointed out.Comment: 26 pages, Few comments added, version to appear in Nuclear Physics

    Time and "angular" dependent backgrounds from stationary axisymmetric solutions

    Full text link
    Backgrounds depending on time and on "angular" variable, namely polarized and unpolarized S1Ă—S2S^1 \times S^2 Gowdy models, are generated as the sector inside the horizons of the manifold corresponding to axisymmetric solutions. As is known, an analytical continuation of ordinary DD-branes, iDiD-branes allows one to find SS-brane solutions. Simple models have been constructed by means of analytic continuation of the Schwarzchild and the Kerr metrics. The possibility of studying the ii-Gowdy models obtained here is outlined with an eye toward seeing if they could represent some kind of generalized SS-branes depending not only on time but also on an ``angular'' variable.Comment: 24 pages, 5 figures, corrected typos, references adde

    Consequence of Hawking radiation from 2d dilaton black holes

    Get PDF
    We investigate the CGHS model through numerical calculation. The behavior of the mass function, which we introduced in our previous work as a ``local mass'', is examined. We found that the mass function takes negative values, which means that the amount of Hawking radiation becomes greater than the initial mass of the black hole as in the case of the RST model.Comment: 17pages, 5 figures (three of them are attached, the other 2 figures are available on request. Some mistakes including typographic errors have been correcte

    Entropy of Rotating Misner String Spacetimes

    Get PDF
    Using a boundary counterterm prescription motivated by the AdS/CFT conjecture, I evaluate the energy, entropy and angular momentum of the class of Kerr-NUT/bolt-AdS spacetimes. As in the non-rotating case, when the NUT charge is nonzero the entropy is no longer equal to one-quarter of the area due to the presence of the Misner string. When the cosmological constant is also non-zero, the entropy is bounded from above.Comment: Revtex, 9 pages, 3 figure

    Quantum Formation of Black Hole and Wormhole in Gravitational Collapse of a Dust Shell

    Get PDF
    Quantum-mechanical model of self-gravitating dust shell is considered. To clarify the relation between classical and quantum spacetime which the shell collapse form, we consider various time slicing on which quantum mechanics is developed. By considering the static time slicing which corresponds to an observer at a constant circumference radius, we obtain the wave functions of the shell motion and the discrete mass spectra which specify the global structures of spherically symmetric spacetime formed by the shell collapse. It is found that wormhole states are forbidden when the rest mass is comparable with Plank mass scale due to the zero-point quantum fluctuations.Comment: 10 pages in twocolumn, 8 figures, RevTeX 3.

    Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence.

    Get PDF
    Senescence is a stress-responsive form of stable cell cycle exit. Senescent cells have a distinct gene expression profile, which is often accompanied by the spatial redistribution of heterochromatin into senescence-associated heterochromatic foci (SAHFs). Studying a key component of the nuclear lamina lamin B1 (LMNB1), we report dynamic alterations in its genomic profile and their implications for SAHF formation and gene regulation during senescence. Genome-wide mapping reveals that LMNB1 is depleted during senescence, preferentially from the central regions of lamina-associated domains (LADs), which are enriched for Lys9 trimethylation on histone H3 (H3K9me3). LMNB1 knockdown facilitates the spatial relocalization of perinuclear H3K9me3-positive heterochromatin, thus promoting SAHF formation, which could be inhibited by ectopic LMNB1 expression. Furthermore, despite the global reduction in LMNB1 protein levels, LMNB1 binding increases during senescence in a small subset of gene-rich regions where H3K27me3 also increases and gene expression becomes repressed. These results suggest that LMNB1 may contribute to senescence in at least two ways due to its uneven genome-wide redistribution: first, through the spatial reorganization of chromatin and, second, through gene repression
    • …
    corecore