18 research outputs found
Palatini formulation of modified gravity with a nonminimal curvature-matter coupling
We derive the field equations and the equations of motion for massive test
particles in modified theories of gravity with an arbitrary coupling between
geometry and matter by using the Palatini formalism. We show that the
independent connection can be expressed as the Levi-Civita connection of an
auxiliary, matter Lagrangian dependent metric, which is related with the
physical metric by means of a conformal transformation. Similarly to the metric
case, the field equations impose the non-conservation of the energy-momentum
tensor. We derive the explicit form of the equations of motion for massive test
particles in the case of a perfect fluid, and the expression of the extra-force
is obtained in terms of the matter-geometry coupling functions and of their
derivatives. Generally, the motion is non-geodesic, and the extra force is
orthogonal to the four-velocity.Comment: 7 pages, no figures; v2, revised and corrected version; new Section
adde
Perturbations and non-Gaussianities in three-form inflationary magnetogenesis
We reconsider magnetogenesis in the context of three-form inflation, and its
backreaction. In particular, we focus on first order perturbation theory during
inflation and subsequent radiation era: we discuss the consistency of the
perturbative approach, and elaborate on the possible non-Gaussian signatures of
the model.Comment: 29 pages and 8 figure
Cosmological perturbations in the Palatini formulation of modified gravity
Cosmology in extended theories of gravity is considered assuming the Palatini
variational principle, for which the metric and connection are independent
variables. The field equations are derived to linear order in perturbations
about the homogeneous and isotropic but possibly spatially curved background.
The results are presented in a unified form applicable to a broad class of
gravity theories allowing arbitrary scalar-tensor couplings and nonlinear
dependence on the Ricci scalar in the gravitational action. The gauge-ready
formalism exploited here makes it possible to obtain the equations immediately
in any of the commonly used gauges. Of the three type of perturbations, the
main attention is on the scalar modes responsible for the cosmic large-scale
structure. Evolution equations are derived for perturbations in a late universe
filled with cold dark matter and accelerated by curvature corrections. Such
corrections are found to induce effective pressure gradients which are
problematical in the formation of large-scale structure. This is demonstrated
by analytic solutions in a particular case. A physical equivalence between
scalar-tensor theories in metric and in Palatini formalisms is pointed out.Comment: 14 pages; the published version (+ an appendix). Corrected typos in
eqs. 30,33 and B
Towards a Resolution of the Cosmological Singularity in Non-local Higher Derivative Theories of Gravity
One of the greatest problems of standard cosmology is the Big Bang
singularity. Previously it has been shown that non-local ghostfree
higher-derivative modifications of Einstein gravity in the ultra-violet regime
can admit non-singular bouncing solutions. In this paper we study in more
details the dynamical properties of the equations of motion for these theories
of gravity in presence of positive and negative cosmological constants and
radiation. We find stable inflationary attractor solutions in the presence of a
positive cosmological constant which renders inflation {\it geodesically
complete}, while in the presence of a negative cosmological constant a cyclic
universe emerges. We also provide an algorithm for tracking the super-Hubble
perturbations during the bounce and show that the bouncing solutions are free
from any perturbative instability.Comment: 38 pages, 6 figures. V2: Added: a word to the title, clarifications,
an appendix, many references. To appear in JCA
Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality
We study the background cosmology of the ghost-free, bimetric theory of
gravity. We perform an extensive statistical analysis of the model using both
frequentist and Bayesian frameworks and employ the constraints on the expansion
history of the Universe from the observations of supernovae, the cosmic
microwave background and the large scale structure to estimate the model's
parameters and test the goodness of the fits. We explore the parameter space of
the model with nested sampling to find the best-fit chi-square, obtain the
Bayesian evidence, and compute the marginalized posteriors and mean
likelihoods. We mainly focus on a class of sub-models with no explicit
cosmological constant (or vacuum energy) term to assess the ability of the
theory to dynamically cause a late-time accelerated expansion. The model
behaves as standard gravity without a cosmological constant at early times,
with an emergent extra contribution to the energy density that converges to a
cosmological constant in the far future. The model can in most cases yield very
good fits and is in perfect agreement with the data. This is because many
points in the parameter space of the model exist that give rise to
time-evolution equations that are effectively very similar to those of the
CDM. This similarity makes the model compatible with observations as
in the CDM case, at least at the background level. Even though our
results indicate a slightly better fit for the CDM concordance model
in terms of the -value and evidence, none of the models is statistically
preferred to the other. However, the parameters of the bigravity model are in
general degenerate. A similar but perturbative analysis of the model as well as
more data will be required to break the degeneracies and constrain the
parameters, in case the model will still be viable compared to the
CDM.Comment: 42 pages, 9 figures; typos corrected in equations (2.12), (2.13),
(3.7), (3.8) and (3.9); more discussions added (footnotes 5, 8, 10 and 13)
and abstract, sections 4.2, 4.3 and 5 (conclusions) modified in response to
referee's comments; references added; acknowledgements modified; all results
completely unchanged; matches version accepted for publication in JHE
Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment
Peer reviewe