72 research outputs found

    In vivo real-time rectal wall dosimetry for prostate radiotherapy

    Get PDF
    Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for realtime in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70 μm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6 MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within ±2.5% in the azimuth and +2.5%/−4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2–10 Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6 and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing the capability for real-time dose monitoring of the rectal wall dose during treatment

    Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury

    Get PDF
    WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation

    External validation of a model to predict the survival of patients presenting with a spinal epidural metastasis

    Get PDF
    The surgical treatment of spinal metastases is evolving. The major problem is the selection of patients who may benefit from surgical treatment. One of the criteria is an expected survival of at least 3 months. A prediction model has been previously developed. The present study has been performed in order to validate externally the model and to demonstrate that this model can be generalized to other institutions and other countries than the Netherlands. Data of 356 patients from five centers in Germany, Spain, Sweden, and the Netherlands who were treated for metastatic epidural spinal cord compression were collected. Hazard ratios in the test population corresponded with those of the developmental population. However, the observed and the expected survival were different. Analysis revealed that the baseline hazard function was significantly different. This tempted us to combine the data and develop a new prediction model. Estimating iteratively, a baseline hazard was composed. An adapted prediction model is presented. External validation of a prediction model revealed a difference in expected survival, although the relative contribution of the specific hazard ratios was the same as in the developmental population. This study emphasized the need to check the baseline hazard function in external validation. A new model has been developed using an estimated baseline hazar

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

    Get PDF
    Purpose: Deformable image registration (DIR) is necessary for accurate dose accumulation between multiple radiotherapy image sets. DIR algorithms can suffer from inverse and transitivity inconsistencies. When using deformation vector fields (DVFs) that exhibit inverse-inconsistency and are nontransitive, dose accumulation on a given image set via different image pathways will lead to different accumulated doses. The purpose of this study was to investigate the dosimetric effect of and propose a postprocessing solution to reduce inverse consistency and transitivity errors. Methods: Four MVCT images and four phases of a lung 4DCT, each with an associated calculated dose, were selected for analysis. DVFs between all four images in each data set were created using the Fast Symmetric Demons algorithm. Dose was accumulated on the fourth image in each set using DIR via two different image pathways. The two accumulated doses on the fourth image were compared. The inverse consistency and transitivity errors in the DVFs were then reduced. The dose accumulation was repeated using the processed DVFs, the results of which were compared with the accumulated dose from the original DVFs. To evaluate the influence of the postprocessing technique on DVF accuracy, the original and processed DVF accuracy was evaluated on the lung 4DCT data on which anatomical landmarks had been identified by an expert. Results: Dose accumulation to the same image via different image pathways resulted in two different accumulated dose results. After the inverse consistency errors were reduced, the difference between the accumulated doses diminished. The difference was further reduced after reducing the transitivity errors. The postprocessing technique had minimal effect on the accuracy of the DVF for the lung 4DCT images. Conclusions: This study shows that inverse consistency and transitivity errors in DIR have a significant dosimetric effect in dose accumulation; Depending on the image pathway taken to accumulate the dose, different results may be obtained. A postprocessing technique that reduces inverse consistency and transitivity error is presented, which allows for consistent dose accumulation regardless of the image pathway followed

    Risk-Adaptive Volumetric Modulated Arc Therapy Using Biological Objective Functions for Subvolume Boosting in Radiotherapy

    Get PDF
    Objectives. Simultaneous integrated boost (SIB) for prostate cancer allows increases in tumor control probability while respecting normal tissue dose constraints. Biological optimization functions that optimize based on treatment outcome can be used to create SIB prostate plans. This study investigates the feasibility of biologically optimized volumetric modulated arc therapy (VMAT) for SIB prostate radiotherapy. Methods. Five prostate cancer patients with diffusion-weighted MR images were selected for analysis. A two-step VMAT optimization was performed, which consisted of an initial biological optimization of a static gantry angle delivery followed by conversion of the static delivery to a single arc VMAT plan. A dosimetric analysis was performed on the resulting plans. Results. The VMAT plans resulted in a ΔEUD between the prostate and the boost volume of between 15.1 Gy and 20.3 Gy. Rectal volumes receiving 75.6 Gy ranged from 4.5 to 9.9%. Expected rectal normal tissue complication probabilities were between 8.6% and 21.4%. Maximum bladder doses ranged from 73.6 Gy to 75.8 Gy. Estimated treatment time was 120 s or less. Conclusions. The presented biological optimization method resulted in deliverable VMAT plans that achieved sufficient modulation for SIB without violating rectal and bladder dose constraints. Advances in knowledge. This study presents a method for creating simultaneous integrated boost VMAT treatments using biological outcome objective functions

    Endo-rectal balloon cavity dosimetry in a phantom: Performance under IMRT and helical tomotherapy beams

    No full text
    Background and purpose: The use of endo-rectal balloons as immobilisation devices in external beam radiotherapy for prostate cancer has led to improved target position reproducibility and a decrease in rectal toxicity. The air cavity created by an endo-rectal balloon in photon radiotherapy perturbs the dose distribution. In this study, the effect of the balloon cavity on the dose distribution and the accuracy to which two treatment planning systems calculate the dose distribution were investigated.Materials and methods: Single beams as well as 3D conformal, conventional IMRT and helical tomotherapy treatment plans were investigated using a specifically constructed phantom. Radiochromic film was used to measure the cavity wall doses and cavity wall DVHs.Results: For a 70 Gy prescription dose both the Pinnacle and TomoTherapy TPSs over-predicted the anterior cavity wall dose by 1.43 Gy, 3.92 Gy and 2.67 Gy for 3D conformal, conventional IMRT and helical tomotherapy, respectively. The posterior cavity wall dose was under-predicted by 2.62 Gy, 2.01 Gy and 4.79 Gy for 3D conformal, conventional IMRT and helical tomotherapy, respectively. An over-prediction by the Pinnacle RTPS of the V50, V60, V65 and V70 values for the cavity wall DVH was measured for the 3D conformal and conventional IMRT cases. These reductions may lead to a less than expected rectal toxicity. The TomoTherapy RTPS under-predicted the V50, V60, V65 and V70 values which may lead to higher rectal toxicity than predicted.Conclusion: Calculation of dose around an air cavity created by an endo-rectal balloon provides a challenge for radiotherapy planning systems. Various electronic disequilibrium situations exist due to the cavity, which can lead to a lower anterior rectal wall and higher posterior rectal wall dose than that calculated by planning systems. This has consequences for comparisons of dose volume constraints between different modalities
    corecore