6 research outputs found

    Next-Generation Sequencing to Detect Deletion of RB1 and ERBB4 Genes in Chromophobe Renal Cell Carcinoma: A Potential Role in Distinguishing Chromophobe Renal Cell Carcinoma from Renal Oncocytoma

    Get PDF
    Overlapping morphologic, immunohistochemical, and ultrastructural features make it difficult to diagnose chromophobe renal cell carcinoma (ChRCC) and renal oncocytoma (RO). Because ChRCC is a malignant tumor, whereas RO is a tumor with benign behavior, it is important to distinguish these two entities. We aimed to identify genetic markers that distinguish ChRCC from RO by using next-generation sequencing (NGS). NGS for hotspot mutations or gene copy number changes was performed on 12 renal neoplasms, including seven ChRCC and five RO cases. Matched normal tissues from the same patients were used to exclude germline variants. Rare hotspot mutations were found in cancer-critical genes (TP53 and PIK3CA) in ChRCC but not RO. The NGS gene copy number analysis revealed multiple abnormalities. The two most common deletions were tumor-suppressor genes RB1 and ERBB4 in ChRCC but not RO. Fluorescence in situ hybridization was performed on 65 cases (ChRCC, n = 33; RO, n = 32) to verify hemizygous deletion of RB1 (17/33, 52%) or ERBB4 (11/33, 33%) in ChRCC, but not in RO (0/32, 0%). In total, ChRCCs (23/33, 70%) carry either a hemizygous deletion of RB1 or ERBB4. The combined use of RB1 and ERBB4 fluorescence in situ hybridization to detect deletion of these genes may offer a highly sensitive and specific assay to distinguish ChRCC from RO

    IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma

    Get PDF
    Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC

    Somatic molecular analysis augments cytologic evaluation of pancreatic cyst fluids as a diagnostic tool

    Get PDF
    Objective: Better tools are needed for early diagnosis and classification of pancreatic cystic lesions (PCL) to trigger intervention before neoplastic precursor lesions progress to adenocarcinoma. We evaluated the capacity of molecular analysis to improve the accuracy of cytologic diagnosis for PCL with an emphasis on non-diagnostic/negative specimens. Design: In a span of 7 years, at a tertiary care hospital, 318 PCL endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) were evaluated by cytologic examination and molecular analysis. Mucinous PCL were identified based on a clinical algorithm and 46 surgical resections were used to verify this approach. The mutation allele frequency (MAF) of commonly altered genes (BRAF, CDKN2A, CTNNB1, GNAS, RAS, PIK3CA, PTEN, SMAD4, TP53 and VHL) was evaluated for their ability to identify and grade mucinous PCL. Results: Cytology showed a diagnostic sensitivity of 43.5% for mucinous PCL due in part to the impact of non-diagnostic (28.8%) and negative (50.5%) specimens. Incorporating an algorithmic approach or molecular analysis markedly increased the accuracy of cytologic evaluation. Detection of mucinous PCL by molecular analysis was 93.3% based on the detection of KRAS and/or GNAS gene mutations (p = 0.0001). Additional genes provided a marginal improvement in sensitivity but were associated with cyst type (e.g. VHL) and grade (e.g. SMAD4). In the surgical cohort, molecular analysis and the proposed algorithm showed comparable sensitivity (88.9% vs. 100%). Conclusions: Incorporating somatic molecular analysis in the cytologic evaluation of EUS-FNA increases diagnostic accuracy for detection, classification and grading of PCL. This approach has the potential to improve patient management

    Is it a primary or metastatic melanocytic neoplasm of the central nervous system?: A molecular based approach

    No full text
    Primary melanocytic neoplasms of the central nervous system (CNS) are uncommon and must be distinguished from metastatic lesions as patients with metastatic disease carry a worse prognosis. Therefore, tools to aid in the diagnosis of a primary CNS melanocytic neoplasm would be of clinical utility. Primary CNS melanocytic neoplasms, including uveal melanomas have frequent mutations in GNAQ and GNA11, but are rare in cutaneous and mucosal melanomas. Additionally, primary uveal melanomas often exhibit monosomy 3 conferring an elevated risk of metastasis. We present a 63 year-old male with a melanocytic neoplasm in the thoracic spinal cord. Molecular studies revealed the tumor contained a GNAQ mutation and four-color fluorescent in situ hybridization (FISH) composed of chromosome enumeration probes for 3, 7, 17 and a locus specific probe for 9p21/CDKN2A yielded a normal result (i.e. two copies per cell), favoring a primary versus metastatic melanocytic neoplasm of the CNS. We report a case in which the combination of mutational analysis and FISH aided in identifying the origin of the neoplasm
    corecore