63 research outputs found

    Effect of the Processing Conditions on the Microstructural Features and Mechanical Behavior of Aluminum Alloys

    Get PDF
    Aluminum and aluminum alloys are widely used for aircraft structures, where they are subjected to demanding conditions and where is an increased demand for weight reduction and fuel savings. Aluminum comprises 8% of the earth?s crust and is, therefore, the most abundant structural metal. Its production since 1965 has surpassed that of copper and now comes next to iron. This increased use of aluminum alloys leads to a need for deeper understanding of their mechanical properties and the impacts of processing parameters. The mechanical properties can determine by controlling the microstructures of the alloys. For example, precipitation hardening is the main strengthening mechanism improving the tensile and yield strength. Solute atoms, precipitates and dispersoids influences to the yield strength, since they act as distributed pinning points for mobile dislocations, thus increasing the shear stress required to move the dislocations. Another approach is the manipulation of a grain size that can be performed by alloying or plastic deformation processes. Therefore, the precise understanding of each mechanism that can influence the properties of aluminum and its alloys is very important. The aim of this chapter is to shed light on the influence of the processing history on the microstructure and mechanical properties

    Introductory Chapter: Magnesium Alloys

    Get PDF

    EFFECT OF THE HEAT AND SURFACE LASER TREATMENT ON THE CORROSION DEGRADATION OF THE Mg-Al ALLOYS

    Get PDF
    In this paper there is presented the corrosion behavior of the cast magnesium alloys as cast state, after heat and laser treatment. Pitting corrosion resistance of the analyzed alloys was carried out using the potentiodynamic electrochemical method (direct current), based on a anodic polarization curve. On the basis of the achieved anodic polarization curves, using the Tefel extrapolation method near to the corrosion potential, the quantitative data were determined, which describe the electrochemical corrosion process of the investigated alloys: value of the corrosion potential Ecorr (mV), polarization resistance RP (kohm.cm2), corrosion current density icorr (10-6A/cm2), corrosion rate Vcorr (mm/year) as well the mass loss Vc (g/m2<)
    • 

    corecore