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Abstract

Aluminum and aluminum alloys are widely used for aircraft structures, where they are
subjected to demanding conditions and where is an increased demand for weight
reduction and fuel savings. Aluminum comprises 8% of the earth’s crust and is, there-
fore, the most abundant structural metal. Its production since 1965 has surpassed that of
copper and now comes next to iron. This increased use of aluminum alloys leads to a
need for deeper understanding of their mechanical properties and the impacts of
processing parameters. The mechanical properties can determine by controlling the
microstructures of the alloys. For example, precipitation hardening is the main strength-
ening mechanism improving the tensile and yield strength. Solute atoms, precipitates
and dispersoids influences to the yield strength, since they act as distributed pinning
points for mobile dislocations, thus increasing the shear stress required to move the
dislocations. Another approach is the manipulation of a grain size that can be performed
by alloying or plastic deformation processes. Therefore, the precise understanding of
each mechanism that can influence the properties of aluminum and its alloys is very
important. The aim of this chapter is to shed light on the influence of the processing
history on the microstructure and mechanical properties.

Keywords: aluminum, heat treatment, structure, properties, severe plastic deformation

1. Aluminum—introduction

Aluminum is the third most abundant element in the earth’s crust and the most abundant

metallic element. For the last five decades, it has been second only to iron in an industrial use.

It is worth to point out that the potential of aluminum as engineering material was found well

before it became an industrial material. It was supposed that the most useful field for this metal

will be in its alloys. At the beginning, the application of aluminum was limited to small- or

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



high-valuable items due to the very high cost of this material. Nowadays, pure aluminum and

its alloys play a fundamental role in engineering. Aluminum is the most heavily consumed

non-ferrous metal in the world, with concurrent annual production at 130 million metric

tonnes. About 50% of this total alumina production ~65 million tonnes is “primary aluminum”.

The process of primary aluminum production is divided into three separate stages [1–3].

• Mining of the raw material (bauxite and a variety of ores);

• Preparation of an aluminum oxides from ores;

• Production of primary aluminum.

The total world production of primary aluminum has increased from 13 million metric tones in

1974 to about 65 million metric tones in 2016 (Figure 1).

At present, consumers and engineers are demanding energy efficiency, thus aluminum can

play a fundamental role in driving this change. Due to the fact that by replacing the steel parts

with those made from aluminum, a significant decrease in weight can be achieved, many car

Figure 1. World primary aluminum production [4].
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companies are now moving to aluminum to achieve this goal. Moreover, its usage in the

automotive industry is accelerating (Figure 2) because it offers the fastest, safest and environ-

mentally friendly way to increase performance and fuel economy. Aluminum and its alloys are

mainly used in an automotive, aerospace and construction engineering due to their unique

properties such as corrosion resistance and high specific strength. Its usage in automotive

applications has increased by more than 80% in the past 5 years. It is predicted that a total

amount of about 50 kg of aluminum content per car produced in Europe in 1990 will increase

to about 250 kg in the 2020 year. However, to meet the engineers’demand, the properties of Al

and its alloys have to be increased or modified, which can be obtained through the

microalloying, heat treatment, plastic deformation or the combination of this treatment [2, 3, 6].

2. Strengthening of aluminum

Like all known pure metals, in comparison to its alloys, pure aluminum has a low strength.

Therefore, many elements are added to solid solution of aluminum. All known alloying

elements that are used for the production of Al alloys can be classified into three principal

groups: basic, ancillary additions and impurities. Depending upon the nature of an alloy, the

same elements could play different roles. In a great majority of aluminum alloys, four kinds of

alloying elements are used: magnesium, zinc, copper and silicon. These additions can be

Figure 2. Average use of aluminum per car—data in Western Europe [5].
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classified as “basic” or “principal”, due the fact that they are introduced into Al solid solution

in (relatively) large amounts and create their microstructure mechanical and physical proper-

ties. This introduction of relatively large amounts of alloying elements can be done because

they are characterized by considerable solubility in Al. Due this fact this introduced atoms are

obstacles for dislocation movement and enhances strength. The solid solution strengthening

can take place through three basic mechanisms:

• Lattice strain field interactions between dislocations and alloying atoms result in a

decrease of dislocation movement.

• Alloying elements that are in solid solution impose lattice strains on surrounding host

atoms.

• Alloying atoms tend to diffuse and segregate around the dislocation to find atomic sites

more suited to their radii. This decreases the entire strain energy and “anchor” or “pin”

the dislocation.

The final properties of such alloys depend on a complex interaction of chemical composition,

solidification sequence of main phases during crystallization process history [1, 6–10].

The most important function of the alloying of Al solid solution is to enhance alloy mechanical

properties. A strengthening effect proceeds when lattice strain field interactions occur between

alloying elements and dislocations. These dislocations are imperfections in the atomic struc-

ture of the material. This single atom can substitute the aluminum atoms in the lattice. In

addition, they may fit in the atomic lattice being substitutional atoms (Figure 3). In contrast to

Figure 3. The principle of solid solution strengthening mechanism due atomic radii mismatch, (a) smaller substitutional

alloying element generates a local shear at A and B that opposes motion of dislocation to the right, (b) element generates a

local shear at C and D that opposes motion of dislocation to the right [9].
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substitutional atoms, the interstitial atoms have considerably smaller atomic radii than aluminum.

Due to the fact that aluminum has a small atomic radii, the interstitial atoms do not frequently

form substitutional atoms. Atoms introduced to the aluminum lattice can cause a distortion in

crystal lattice and these distorted regions impede the dislocation movement which causes a

strengthening effect. The difference of the Al atomic radii and that used in alloying element

((RAl � R2)/RAl) � 100% reach the maximal value, for instance for magnesium (11.7%) and

copper (10.5%). These alloying elements provide the greatest solid solution strengthening effect

(Δσb/1 at.% = 30–40 MPa). The addition of alloys in aluminummay also influence other important

properties such as castability. This property, to a very significant extent, will define whether an

alloy could be used in industry or not [6–10]. For most engineering parts made from aluminum

two types of alloys are used:

• Non-heat-treatable or work-hardening that are solid solution (and eventually strain)

hardened, showing a good combination of strength and formability.

• The heat-treatable alloys that obtain their required strength through the heat treatment—

(precipitation treatment).

The mechanical properties of Al alloys can also be enhanced by the formation of fine uniformly

dispersed in Al matrix particles of the second phase within the original phase matrix. This

process is known as precipitation (age) hardening. The fundamental demand for an alloy to be

strengthened through this process is that solid solubility decrease with decreasing tempera-

ture. The age hardening of Al alloys is accomplished by two individual heat treatments. At the

first stage, a material is subjected to a solution heat treatment in which all of the β phases

dissolves and forms a single-phase solid solution. Moreover, in a great majority of Al alloys,

the diffusion rates are very slow for this reason the solution treatment has to be conducted for

relatively long periods. The solution treatment is followed by rapid quenching. At this stage of

heat treatment, a non-equilibrium situation exists in which α phase solid solution with some

atoms of an alloying element is present. The alloy in this state is weak and ductile. To achieve

the strengthening effect, the second type of treatment must be used—aging. At this stage, the

supersaturated solid solution is heated to an intermediate temperature, at which diffusion

rates become appreciable. The secondary β phase precipitate start to form as fine dispersed

particles in a specified precipitation sequence that may consist of the coherent, semicoherent

and non-coherent precipitates. The character, coherence and subsequently the strength depend

on the temperature and time of artificial aging and a lattice misfit between a strengthening

precipitate and Al matrix. The strength enhancement is reached because dislocations interact

with these precipitates. Depending on the character of a precipitate and crystallographic

orientation in relation with an aluminum matrix, different interactions can occur. Precipitates

can be impenetrable or penetrable by dislocations. In the first case, a dislocation is forced by

the applied stress bow around the precipitate and bypasses it, leaving a dislocation loop

around the particle which is called Orowan loop (Figure 4). In the second case, the precipitate

can be sheared by the dislocations and moves through the crystal. This phenomenon can occur

when the precipitate is coherent with the Al matrix. Generally, coherent particles can be

penetrable or not, while large particles are usually incoherent thus impenetrable. For

some Al alloys such as Al-Cu, precipitation strengthening can occur spontaneously at room
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temperature over long time periods. The growth of mechanical properties during natural

aging is continuous or becomes stable. Whereas in artificially aged alloy with an increase in

aging time, the strength of the material reaches a maximum value, and after that diminishes.

This decrease of mechanical strength is known as overaging and usually can be related to a

growth of precipitates and coherency loss [7–13].

Another principal tool used for strength enhancement of many materials is the manipulation of

their grain size. When the material is deformed and when the resistance to plastic flow is

governed by dislocation glide and diffusion-controlled processes are not an issue, a decrease in

the grain size causes the strengthening effect [14–17]. Thus, the mechanical strength is related to

the grain size, d, through the Hall-Petch equation which states that the yield stress, σy, is given by:

σy ¼ σ0 þ kyd
�1=2 (1)

To transform a coarse-grained microstructure into an ultrafine, it is required to impose an

exceptionally high strain into a sample to introduce a high density of dislocations and to allow

Figure 4. Dislocation bypass by the Orowan bowing mechanism [8].
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these dislocations to re-arrange to form an array of grain boundaries—usually the low-angle

grain boundaries are transformed into a high-angle grain. The conventional metal-working

procedures, such as drawing, extrusion, rolling or forging, are restricted in their ability to

produce ultrafine grains for two important reasons. First, there is a limitation on the overall

strain that may be imposed using these procedures because the processing techniques incor-

porate corresponding reductions in the cross-sectional dimensions of the work-pieces. The

second reason is that the strains imposed in conventional processing are insufficient to convert

coarsely grained structures into this ultra fine-grained (UFG) because most of the industrially

used alloys exhibit low workability at ambient and low temperatures. As a consequence of the

limitations mentioned above, attention has been paid to develop an alternative metal-working

procedure, based on the application of severe plastic deformation (SPD) techniques, where a

sample is subjected to the extremely high strains which are imposed at relatively low tempera-

tures without changing cross-sectional dimensions of the samples. Many different SPD tech-

niques are now available and summaries of these various procedures published in works of

many scientists are in this several reviews [14–18]. Nevertheless, major emphasis has been placed

to date on the two techniques of equal channel angular pressing (ECAP) and high pressure

torsion (HPT) and, accordingly, one of these procedures—ECAP will be used in this report.

3. Principles and processing by ECAP

There are numerous studies showing the behavior of aluminum alloys samples subjected to a

severe plastic strain [12–18], including metal processing through the standard industrial

methods of rolling or extrusion, but all of these processes necessitate a change in the dimen-

sions of the work samples. In contrast to these methods, ECAP processing differs from them.

The general principle of ECAP procedure is shown schematically in Figure 5.

Processing by ECAP uses a specially designed die consisting of two channels that are bent

through a sharp angle near the die center. The sample is usually pre-machined to fit tight the

channel, and then is pressed through die using a plunger. The ECAP die is defined by two

angles: the channel angle Φ that represents the intersection angle of two parts of the channel,

and second is the curvature angle Ψ that represents the angle at the outer arc of curvature

where the two parts of the channel intersect. The cross-sectional dimensions of the work

sample are not changed during processing thus the process can be repeated to obtain high

strain accumulation. Additionally, it is possible to initiate different slip systems by sample

rotation between consecutive passes. This processing routes are termed in nomenclature as

route Awhere the sample is pressed repetitively without rotation, routes BA and BC where the

sample is rotated by 90� along the longitudinal axis in alternate direction and same direction,

respectively, and route C where the sample is rotated by 180� between each passes. The

equivalent strain imposed in one pass of ECAP is dependent primarily upon the die channel

angle Φ and, to a lesser extent, on the angle Ψ. It can be shown from first principles that the

shear strain εN is given by a relationship of the form [14–20].

εN ¼
N
ffiffiffi

3
p 2 cot

Φ

2
þ
Ψ

2

� �

þΨ cos
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þ
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where N is the number of ECAP passes. In conventional ECAP, it is generally assumed that the

billet fills the corner of the die at the intersection of the two parts of the channel, and this

produces a uniform microstructure throughout the billet.

4. Aluminum-magnesium alloys

Al-Mg alloys are commonly used in transport and for structural components in the automotive

industry due to their combination of good properties that are excellent corrosion and high

specific strength. As of now, mechanical properties and corrosion resistance of Al-Mg alloys are

required to be improved to broaden the application area in a new industrial field. It is well

known that the great mechanical properties of Al-Mg alloys come from magnesium solution

strengthening. The solubility of magnesium in aluminum is very high ~14.9% at 450�C (Figure 6)

thus alloying even with small quantity of Mg, results in a significant increase in strength due the

solution strengthening [21–26].

With an increase in Mg content, Al-Mg alloys become susceptible to intergranular corrosion

thus their application field is limited. This susceptibility to corrosion is due to the formation of

anodic β (Al3Mg2) phase at grain boundaries. Due the fact that the β phase is strongly anodic

Figure 5. The general principle of ECAP processing [14].
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in relation to the Al matrix, it corrodes and dissolves very fast when alloy is exposed to a

conductive medium such as seawater. This is because of the formation of galvanic coupling

between the Al matrix and the β phase. The dissolution of continuous grain boundary β phase

results in the decrease in the bond strength of grain boundaries, and leads to elements failure.

The size, morphology and its distribution were reported to be affected by a heat treatment

conditions. It was found that precipitation of β phase at the grain boundaries increases with

time of heat treatment at an elevated temperature. The precipitation velocity of β-Al3Mg2
phase can be controlled by temperature. Precipitation of β phase can be continuous at 160�C,

but at higher temperature of annealing (220�C) becomes discontinuous. The formation of β0

and β phase is associated with the change in mechanical properties during the heat treatment.

Recently, more details of the precipitation process in Al-Mg alloys, such as the lattice structure,

limited formation temperatures and shape of different precipitates were obtained from many

investigation results [21–26].

Based on the data published in the nomenclature, the precipitation sequence [27–31] in Al-Mg

alloys can be described as follows:

Supersaturated solid solution-GP zone� β00
� β0

� β phase (3)

where GP (Guinier-Preston) zones (short-range ordered Al3Mg) have a modulated structure

and β00 phase (long-range ordered Al3Mg, a = 0.408 nm) has an L12 structure in which Al and

Mg atoms are alternatively aligned along the [100] directions. β0 phase, Al3Mg2, is reported to

have a hexagonal (a = 1.002 nm, c = 1.636 nm) structure and semi-coherent with the matrix. The

equilibrium β phase, Al3Mg2, is of fcc structure (a = 2.824 nm) with a unit cell containing 1186

atoms. However, the precipitation sequence can be slightly changed if aging temperature or

Mg content is different.

Figure 6. Aluminum-magnesium binary diagram [11].
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5. Material and experimental procedure

The chemical composition of the aluminum-magnesium alloy used in this investigation is

given in Table 1.

The first stage of the experiment was to investigate the aging behavior of the solution-treated

samples. The process was conducted in a resistance furnace followed by quenching and

artificial aging. To characterize mechanical properties and investigate the aging response,

hardness measurements were performed using Rockwell hardness tester ZWICK ZHR 4150.

For selected samples, the static tensile tests were also performed. In the second stage, samples

were subjected to the ECAP process. Two different dies were used in this investigation. First

Φ = 120�, providing an equivalent strain equal to ~0.6 in each pass and second Φ = 90� with an

additional twist angle at the outer channel providing an equivalent strain ~1. To decrease the

friction MoS2 was used as a coating lubricant. For a metallographic study, samples were

prepared according to Struers standards. To reveal structure constituents, samples were etched

using Keller’s, Weck’s and Barker’s reagent. The microstructure was characterized with an

Axio Observer Image Analyzer light microscope under bright field and polarized light. To

obtain information about the chemical composition of the precipitates, scanning electron

microscope equipped with an energy-dispersive X-ray spectroscopy (EDS) detector was used.

The examinations of the thin foils microstructure and phase identification were made on the

high-resolution transmission electron microscope JEM 3010UHR from JEOL, at an accelerating

voltage of 200 kV.

6. Results

6.1. Structure

The representative structures of the Al-Mg alloy are presented in Figure 7a–c. It can be

visible that as-cast microstructure can be characterized as fine dendritic. Moreover, in the

interdendritic regions, β-Al3Mg2 phase exists and are visible insoluble inclusions of the Si-

and Fe-rich phases. Precipitation treatment led to the disappearance of the fine dendritic

microstructure and has no significant impact on the grain size. An EDS chemical composition

microanalysis presented in Table 2 and Figure 8 allow one to confirm the presence of the main

structure constituents. However, due to the fact that expected size of the strengthening

precipitates is >200 nm, the EDS analysis can be overestimated. Therefore, to identify the

morphology and crystal structure of precipitates, transmission electron microscopy (TEM)

was used (Figure 9a–e). It is clear, that during the precipitation treatment process from

supersaturated solid solution, the hardening secondary phases β0-Al3Mg2 precipitates [32].

This secondary precipitate, of which average diameter was measured to be approximately

Mg Fe Si Cu Ti Al

2.86 0.07 0.07 0.01 0.01 Rest

Table 1. Chemical composition of AlMg3 aluminum alloys/wt.%.
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~100 nm (Figure 9a) in the nomenclature is known as metastable with a hexagonal crystal

structure (a = 1.002 nm, c = 1.636 nm), semi-coherent to the aluminum matrix. The β0 pre-

cipitates are formed mainly through nucleation and growth on the structural defects of the

matrix. Moreover, it can be also observed that after precipitation treatment, Al3Fe and Mg2Si

phases are still present which confirms the presented TEM study. Al3Fe impurities precipitates

are usually formed after annealing at 550�C and can pin down the dislocation motion while at

lower temperature Al6Fe forms. Next, to the small Al3Fe phase, larger—about 2 μm in length

—Mg2Si precipitate with many dislocations around can be observed (Figure 9b).

In this study, Rockwell hardness measurements were used as an initial assessment of the

influence heat treatment conditions on the mechanical properties. The experimental results

permitted a correlation between hardness, microstructure and heat treatment conditions to be

established. The mechanical test results are summarized and listed in Tables 3 and 4. Solution

treatment temperature was selected to be just below the solidus temperature (based on the Al-

Mg binary diagram—Figure 6). In this study, the temperature of artificial aging was selected to

be 160 and 180�C, respectively. Based on the data listed in Tables 3 and 4, it can be concluded

that the AlMg3 alloy exhibits a high aging potential. It can be observed that there is a 50%

increase in hardness of heat-treated samples. Taking into account the energy costs, the most

beneficial conditions seem to be solution treatment and artificial aging for 8 h while the

temperature has minor influence on the strength. The observed increase in hardness is a result

Figure 7. Microstructures of AlMg3 alloy (a) as-cast state (Weck’s reagent), (b) precipitation-treated state (Barker’s

reagent)—polarized light, (c) precipitation-treated (Keller’s reagent).

Point/phase Element/line The average mass concentration of elements (%)

Weight (%) Atomic (%)

1/Mg2Si MgK 56.46 59.84

AlK 5.74 5.48

SiK 37.81 34.68

2/Al3Fe AlK 54.45 71.22

FeK 45.55 28.78

Table 2. Results of pointwise EDS chemical composition microanalysis.
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Figure 8. The SEM microstructure of AlMg3 alloy in precipitation-treated state.

Figure 9. TEM microstructures of the AlMg3 alloy in precipitation-treated state showing size and morpholohgy of (a) β0-

Al3Mg2 hardenning phase, (b) Mg2Si and Al3Fe phases, (c) diffraction spot from point 1 (Al3Mg2), (d) diffraction spot from

point 2 (Mg2Si) and (e) diffraction spot from point 3 (Al3Fe).
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of the precipitation of the semicoherent secondary β0
—Al3Mg2 phase from the supersaturated

solid solution sssα [33, 34].

To examine the influence of the selected heat treatment conditions on the tensile properties,

static tensile tests were carried out. It can be concluded from the presented data that in both

investigated cases an increase in tensile strength is quite similar. Tables 3 and 4 show the

relationship between the tensile strength and heat treatment conditions. The values of the

tensile strength slightly increase with aging time. Aging at higher temperature increases

the tensile strength more rapidly. Tensile strength reaches the maximum after 12 h of artificial

aging (at 160�C) and 8 hours (at 180�C). However, when the sample is aged at 180�C for 12 h, a

decrease in ultimate tensile strength is observed—sample is overaged. Time of solution treat-

ment has a minor influence on the mechanical properties. Additionally, in contrast to the

tensile strength, the values of elongation at failure decreases with time. When the temperature

of artificial aging is lower (160�C), the values of elongation decreases slightly from 29%

(solution-treated sample) to about 25%. While aging at 180�C decreases elongation to about

23%. This is due to the fact that higher aging temperature increases the rate of the precipitation

process which enhances the mechanical properties but on the other hand decreases the ductility.

6.2. Severe plastic deformation

Figure 10a illustrates the evolution of the microstructure of the Al-3%Mg alloy subjected to six

ECAP passes followed by a precipitation treatment. Based on the metallographic analysis, it can

be concluded that the individual grains cannot be clearly distinguished. The grains become

elongated due to the imposed shear strain. Slip, shear and micro-shear bands create the band-

like microstructure. These bands also refine microstructure of the Al-3%Mg alloy. Moreover,

it can be observed that deformation bands have a preferred crystallographic orientation.

In addition, each single shear or micro-shear band causes lattice rotations lying within the

Solution treatment conditions Artificial aging time (h) (160�C)

Temp. (�C) Time (h) 0 4 8 12 0 4 8 12 0 4 8 12

Hardness (HRF) Tensile strength (MPa) Elongation at failure (%)

580 8 45 65 63 66 198 224 232 236 29 30 25 26

12 46 68 69 67 197 214 225 233 29 29 28 27

Table 3. Summary of the mechanical properties of AlMg3 alloy aged at 160�C.

Solution treatment conditions Artificial aging time (h) (160�C)

Temp. (�C) Time (h) 0 4 8 12 0 4 8 12 0 4 8 12

Hardness (HRF) Tensile strength (MPa) Elongation at failure (%)

580 8 45 65 63 66 198 222 236 232 29 28 26 23

12 46 68 69 67 197 234 238 225 29 25 24 23

Table 4. Summary of the mechanical properties of AlMg3 alloy aged at 180 �C.
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low-to-moderate grain/(sub)grain boundary misorientation and thus their interactions can result

in a violent appearance of the deformation bands having high-angle misorientations. Moreover,

it can also be visible that the microstructure consists of the regions with the higher density of

deformation bands and those less affected. This is due to the fact that, during shear deformation

in the ECAP process, individual grains in the work samples cannot be deformed uniformly

because of the orientation difference. Figure 10b–d illustrates the microstructure evolution of

AlMg3 aluminum alloy subjected to the ECAP with a modified die. It can be observed that the

obtained microstructures differ from that obtained using the conventional equipment. The

grains in the microstructure after one ECAP pass are elongated, parallel to the transverse

direction (TD), while when the number of ECAP passes increases, the obtained microstructures

becomes more complex. It can be seen in Figure 6c (two ECAP passes) that additional shear is

introduced by the twist angle—shear bands intersect at an angle of about 60� after two ECAP

passes (there is an extra shear after each pass at an angle of 30�). When a number of accumulated

strain increases to about ~4 (Figure 10d)—four ECAP passes, the microstructure looks as

completely refined. There is no possibility to distinguish the individual grains. Due to this fact,

to study the changes in the microstructure at higher magnification, TEM study was used.

Figure 10. Optical microscope microstructures of the AlMg3 alloy (a) precipitation treated +6 ECAP passes (120�die,

route Bc), (b) initial state +1 ECAP pass (90� die with 30� twist, route A), (c) initial state +2 ECAP passes (90� die with 30�

twist, route A), (d) initial state +4 ECAP passes (90� die with 30� twist, route A).
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The microstructures of the as deformed (FCC) metals are very complex. The size of individual

grains differs thus grains with diversified size may coexist. Different structure constituents,

such as dislocation-free grains, non-equilibrium grain boundaries, dislocation cell and (sub)

grain structures, low-angle GBs (LAGBs), high-angle grain boundaries (HAGBs), stacking

faults (SFs) and nanotwins, can also be identified [15–22, 33–36]. Figure 11a shows the typical

microstructure of the as deformed material where a dislocation forest forms dense dislocation

walls (DDWs). These DDWs forming cell blocks are free from dislocations. The size of cell

blocks is about 1 μm. One of the most substantial characteristics of the microstructure after

Figure 11. Bright field TEM images showing general microstructure of AlMg3 alloy (a) and (b) bright filed TEM images

showing microstructure of AlMg3 alloy—precipitation treated and six ECAP passes, (c) dark field TEM image of AlMg3

alloy—four ECAP passes (90� die with 30� twist, route A), (d) bright field TEM image from the same area.
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SPD processing is that some grain boundaries may give the appearance of extinction contours.

The presence of diffuse grain boundaries is due the introduction of non-equilibrium grain

boundaries having an excess extrinsic dislocations. This indicates the presence of high internal

stresses and elastic distortions in the crystal lattice. It has been also suggested that these non-

equilibrium GBs may have a strong effect on grain boundary processes such as sliding or

diffusion. One can also see dislocation tangles in the grain interiors which can be considered

as early stages of dislocation cell structure formation. This is related to an increase of strain

accumulation in the material after the consecutive passes of ECAP process. Moreover, the

presented TEM investigation results indicate that some grain interiors may also be free from

dislocations and the dislocation density varies from crystallite to crystallite. Some grains also

have sharp boundaries and are completely free of dislocations and no (sub)grains or disloca-

tion cells can be observed in these grains. Such straight and narrow grain boundaries are

believed to be in an equilibrium state and are high-angle grain boundaries (HAGBs). TEM

investigation has also revealed the presence of Moiré fringes (Figure 11b). Early formation of

very low-angle boundaries—typically for ϕ < 2�, is usually reported in the nomenclature by an

existence of Moiré fringes. This also indicates that lamellar dislocation and cell boundaries

continuously form during ECAP process. Figure 11c and d shows dark field and bright field

images of AlMg3 alloy in as-cast state subjected to four passes using a modified die. It is clearly

visible that with an increase in the number of ECAP passes, the grain/subgrain size decreases

while the dislocation accumulation rise.

To evaluate the influence of the severe plastic deformation process using ECAP method of

samples subjected to different strain paths, hardness measurements and tensile properties

were determined. Due to the small sample size obtained from modified ECAP equipment,

determination of the tensile properties was not possible. The effects of a number of passes and

used ECAP die on mechanical properties are summarized in Table 5.

It is obvious that the plastic deformation processes result in increase strength, however,

processing by SPD allows to impose much greater amounts of plastic strain in comparison to

the conventional processes. Based on the data analysis presented in Table 5, it can be observed

that there is a significant increase in the tensile properties of the 6� ECAPed sample (about 50%

in comparison to a precipitation-treated state). This growth of mechanical properties may be

Hardness (Hv0.3) Ultimate tensile

strength (MPa)

Elongation

at failure (%)

As-cast 45 198 31

Precipitation treated 65 232 25

Precipitation treated + 6 ECAP passes (120� die) 126 384 2.4

As-cast + 1 ECAP pass (90� die, 30� twist) 95 — —

As-cast + 2 ECAP passes (90� die, 30� twist) 107 — —

As-cast + 3 ECAP passes (90� die, 30� twist) 112 — —

As-cast + 4 ECAP passes (90� die, 30� twist) 120 — —

Table 5. Summary of the mechanical properties of AlMg3 alloy in different states.
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attributed to the accumulation of many excess dislocations generated through dislocation multi-

plication during ECAP by a volume fraction of the grain boundaries in the fine-grained micro-

structure. However, it can also be seen that the material after SPD processing loses its ductility

rapidly. The processing using a modified ECAP die also results in a significant increase in

hardness which grows gradually with an increase in ECAP cycles. This considerable strength

increase may be attributed to three strengthening mechanisms, that is, solution strengthening,

dislocation strengthening and grain size strengthening. Solution strengthening originates from

the elastic distortions, however, the dislocation strengthening and grain refinement strengthen-

ing are the main contributors to the significant strength increase of AlMg3 alloy.

7. Conclusions

In this study, we investigate the effect of an ECAP die, its modification and combination of this

process with a heat treatment with the aim to estimate the influence of process parameters on

the structural evolution and mechanical properties of the AlMg3 aluminum alloy. Based on the

analysis of the obtained results, the following conclusions can be stated.

The microstructure of the Al-3%Mg alloy in a precipitation-treated state consists of the α-Al

matrix, large precipitates of Mg2Si, Al3Fe phases and β0-Al3Mg2 fine precipitates with hexago-

nal structure. The presence of a β0-Al3Mg2 phase causes a strengthening effect.

The mechanism of the microstructure refinement after the ECAP process consists of the crea-

tion of dislocation cell structures, non-equilibrium grain boundaries, (sub)grain boundaries

and HAGBs. (Sub)grains develop from dislocation cells. The refined microstructure consists of

the areas with deformation bands (shear bands) separated by HAGBs and non-refined regions

with LAGBs and very low-angle boundaries (showing Moiré fringes on TEM). It is believed

that the grain boundaries first transform into LAGBs and finally HAGBs with an increase in

plastic strain accumulation.

The evolution of hardness of AlMg3 alloy when processed by ECAP with modified die shows

a significant increase after the first pass followed by a more gradual increase with subsequent

pressings until a saturated value is achieved after �four ECAP passes.

The improved mechanical properties of the AlMg3 aluminum alloy obtained through the

combination of ECAP process with heat treatment were a consequence of the solid solution

strengthening, precipitation hardening and grain refinement.
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