11 research outputs found

    Hydrogen Bond-Mediated Conjugates Involving Lanthanide Diphthalocyanines and Trifluoroacetic Acid (Lnpc2@TFA): Structure, Photoactivity, and Stability

    No full text
    The interaction between lanthanide diphthalocyanine complexes, LnPc2 (Ln = Nd, Sm, Eu, Gd, Yb, Lu; Pc = C32H16N8, phthalocyanine ligand) and trifluoroacetic acid (TFA) was investigated in benzene, and the stability of the resulting molecular system was assessed based on spectral (UV-Vis) and kinetic measurements. Structural Density Functional Theory (DFT) calculations provided interesting data regarding the nature of the bonding and allowed estimating the interaction energy between the LnPc2 and TFA species. Conjugates are created between the LnPc2 and TFA molecules via hydrogen bonds of moderate strength (>N∙∙H··) at the meso- -bridges of the Pc moieties, which renders the sandwich system to flatten. Attachment of TFA is followed by rearrangement of electronic density within the chromophore system of the macrocycles manifested in considerable changes in their UV-Vis spectra and consequently the color of the studied solutions (from green to orange). The LnPc2@TFA conjugates including Nd, Sm, Eu, and Gd appeared evidently less photostable when exposed to UV radiation than the related mother compounds, whereas in the case of Yb and Lu derivatives some TFA-prompted stabilizing effect was noticed. The conjugates displayed the capacity for singlet oxygen generation in contrast to the LnPc2s itself. Photon upconversion through sensitized triplet–triplet annihilation was demonstrated by the TFA conjugates of Nd, Sm, Eu, and Gd

    Reductive modification of carbon nitride structure by metals - The influence on structure and photocatalytic hydrogen evolution

    Get PDF
    Pt, Ru, and Ir were introduced onto the surface of graphitic carbon nitride (g-C3N4) using the wet impregnation method. A reduction of these photocatalysts with hydrogen causes several changes, such as a significant increase in the specific surface area, a C/N atomic ratio, a number of defects in the crystalline structure of g-C3N4, and the contribution of nitrogen bound to the amino and imino groups. According to the X-ray photoelectron spectroscopy results, a transition layer is formed at the g-C3N4/metal nanoparticle interphase, which contains metal at a positive degree of oxidation bonded to nitrogen. These structural changes significantly enhanced the photocatalytic activity in the production of hydrogen through the water-splitting reaction. The activity of the platinum photocatalyst was 24 times greater than that of pristine g-C3N4. Moreover, the enhanced activity was attributed to significantly better separation of photogenerated electron-hole pairs on metal nanoparticles and structural distortions of g-C3N4.Web of Science153art. no. 71

    Tetramethylalloxazines as efficient singlet oxygen photosensitizers and potential redox-sensitive agents

    No full text
    Abstract Tetramethylalloxazines (TMeAll) have been found to have a high quantum yield of singlet oxygen generation when used as photosensitizers. Their electronic structure and transition energies (S0 → Si, S0 → Ti, T1 → Ti) were calculated using DFT and TD-DFT methods and compared to experimental absorption spectra. Generally, TMeAll display an energy diagram similar to other derivatives belonging to the alloxazine class of compounds, namely π,π* transitions are accompanied by closely located n,π* transitions. Photophysical data such as quantum yields of fluorescence, fluorescence lifetimes, and nonradiative rate constants were also studied in methanol (MeOH), acetonitrile (ACN), and 1,2-dichloroethane (DCE). The transient absorption spectra were also analyzed. To assess cytotoxicity of new compounds, a hemolytic assay was performed using human red blood cells (RBC) in vitro. Subsequently, fluorescence lifetime imaging experiments (FLIM) were performed on RBC under physiological and oxidative stress conditions alone or in the presence of TMeAll allowing for pinpointing changes caused by those compounds on the intracellular environment of these cells
    corecore