37 research outputs found

    miRNA in head and neck squamous cell carcinomas: promising but still distant future of personalized oncology

    Get PDF
    Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Lack of appropriate preventive screening tests, late detection, and high heterogeneity of these tumors are the main reasons for the unsatisfactory effects of therapy and, consequently, unfavorable outcomes for patients. An opportunity to improve the quality of diagnostics and treatment of this group of cancers are microRNAs (miRNAs) — molecules with a great potential both as biomarkers and therapeutic targets. This review aims to present the characteristics of these short non-coding RNAs (ncRNAs) and summarize the current reports on their use in oncology focused on medical strategies tailored to patients’ needs

    Angiotensin-converting enzyme inhibitors for ovarian cancer? — a new adjuvant option or a silent trap

    Get PDF
    Background: Ovarian cancer is a huge therapeutic and financial problem for which approved treatments have already achieved their limit of efficiency. A cost-effective strategy to extend therapeutic options in this malignancy is drug repurposing aimed at overcoming chemoresistance. Here, angiotensin-converting enzyme inhibitors (ACE-I) are worth considering. Material and methods: We searched literature for publications supporting the idea of adjuvant application of ACE-Is in ovarian malignancy. Then, we searched The Cancer Genome Atlas databases for relevant alternations of gene expression patterns. We also performed in silico structure-activity relationship evaluation for predicting ACE-Is’ cytotoxicity against ovarian cancer cell lines. Finally, we reviewed the potential obstacles in ACE-Is repurposing process. Results: The alternation of angiotensin receptor expression in ovarian cancer translates into poorer patient survival. This confirms the participation of the renin-angiotensin system in ovarian carcinogenesis. In observational studies, ACE-Is were shown synergize with both, platinum-based chemotherapy as well as with antiangiogenic therapy. Consistently, our in silico simulation showed that ACE-Is are probably cytotoxic against ovarian cancer cells. However, the publications on their chemopreventive properties were inconclusive. In addition, some reports correlated ACE-Is use with increased general cancer incidence. We hypothesized that this effect could be associated with mutagenic nitrosamine formation in ACE-Is’ pharmaceutical formulations, as was the case with angiotensin receptor blockers (ARBs) and other well-established pharmaceuticals. Conclusions: Available data warrant further research into repositioning ACE-Is to ovarian cancer as chemosensitizers. Prior to this, however, a special research program is needed to detect possible genotoxic contaminants of ACE-Is

    Midsize noncoding RNAs in cancers: a new division that clarifies the world of noncoding RNA or an unnecessary chaos?

    Get PDF
    Most of the human genome is made out of noncoding RNAs (ncRNAs). These ncRNAs do not code for proteins but carry a vast number of important functions in human cells such as: modification and processing other RNAs (tRNAs, rRNAs, snRNAs, snoRNAs, miRNAs), help in the synthesis of ribosome proteins, initiation of DNA replication, regulation of transcription, processing of pre-messenger mRNA during its maturation and much more. The ncRNAs also have a significant impact on many events that occur during carcinogenesis in cancer cells, such as: regulation of cell survival, cellular signaling, apoptosis, proliferation or even influencing the metastasis process. The ncRNAs may be divided based on their length, into short and long, where 200 nucleotides is the “magic” border. However, a new division was proposed, suggesting the creation of the additional group called midsize noncoding RNAs, with the length ranging from 50–400 nucleotides. This new group may include: transfer RNA (tRNA), small nuclear RNAs (snRNAs) with 7SK and 7SL, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) and YRNAs. In this review their structure, biogenesis, function and influence on carcinogenesis process will be evaluated. What is more, a question will be answered of whether this new division is a necessity that clears current knowledge or just creates an additional misunderstanding in the ncRNA world

    Biological role and diagnostic utility of ribosomal protein L23a pseudogene 53 in cutaneous melanoma

    Get PDF
    Background: Skin melanoma is one of the deadliest types of skin cancer and develops from melanocytes. The genetic aberrations in protein-coding genes are well characterized, but little is known about changes in non-coding RNAs (ncRNAs) such as pseudogenes. Ribosomal protein pseudogenes (RPPs) have been described as the largest group of pseudogenes which are dispersed in the human genome. Materials and methids: We looked deeply at the role of one of them, ribosomal protein L23a pseudogene 53 (RPL23AP53), and its potential diagnostic use. The expression level of RPL23AP53 was profiled in melanoma cell lines using qRT-PCR and analyzed based on the Cancer Genome Atlas (TCGA) data depending on BRAF status and clinicopathological parameters. Cellular phenotype, which was associated with RPL23AP53 levels, was described based on the REACTOME pathway browser, Gene Set Enrichment Analysis (GSEA) analysis as well as Immune and ESTIMATE Scores. Results: We indicted in vitro changes in RPL23AP53 level depending on a cell line, and based on in silico analysis of TCGA samples demonstrated significant differences in RPL23AP53 expression between primary and metastatic melanoma, as well as correlation between  RPL23AP53 and overall survival. No differences depending on BRAF status were observed. RPL23AP53 is associated with several signaling pathways and cellular processes. Conclusions: This study showed that patients with higher expression of RPL23AP53 displayed changed infiltration of lymphocytes, macrophages, and neutrophils compared to groups with lower expression of RPL23AP53. RPL23AP53 pseudogene is differently expressed in melanoma compared with normal tissue and its expression is associated with cellular proliferation. Thus, it may be considered as an indicator of patients' survival and a marker for the immune profile assessment

    Biological role of long non-coding RNA in head and neck cancers

    Get PDF
    AimHead and neck squamous cell carcinoma (HNSCC) are one of the worst prognosis cancers with high mortality of patients. The treatment strategy is primarily based on surgery and radiotherapy but chemotherapy is also used. Every year the knowledge concerning HNSCC biology is updated with new elements such as the recent discovered molecules – long non-coding RNAs. Long non-coding RNAs are involved in regulatory processes in the cells. It has been revealed that the expression levels of lncRNAs are disturbed in tumor cells what results in the acquisition of their specific phenotype. lncRNAs influence cell growth, cell cycle, cell phenotype, migration and invasion ability as well as apoptosis. Development of the lncRNA panel characteristic for HNSCC and validation of specific lncRNA functions are yet to be elucidated. In this work, we collected available data concerning lncRNAs in HNSCC and characterized their biological role. We believe that the tumor examination, in the context of lncRNA expression, may lead to understanding complex biology of the cancer and improve therapeutic methods in the future

    Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31

    Get PDF
    Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life. One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases, the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done. In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology

    An analysis of high-temperature nuclear reactor coupled with gas turbine combined cycle

    No full text
    At present many companies from the energy sector have to follow new regulations and concerns three crucial aspects of energy production: the impact on the environment, the efficiency of energy conversion and the cost of energy. From a technical point of view, the most efficient technology available today for electricity generation is based on a gas turbine combined cycle. In the present paper, an analysis of environmentally friendly, high-temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allow electricity generation with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency for nuclear power plant higher than 50% which is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by most of the traditional power plants

    An analysis of high-temperature nuclear reactor coupled with gas turbine combined cycle

    No full text
    At present many companies from the energy sector have to follow new regulations and concerns three crucial aspects of energy production: the impact on the environment, the efficiency of energy conversion and the cost of energy. From a technical point of view, the most efficient technology available today for electricity generation is based on a gas turbine combined cycle. In the present paper, an analysis of environmentally friendly, high-temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allow electricity generation with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency for nuclear power plant higher than 50% which is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by most of the traditional power plants

    Impact of ramipril nitroso-metabolites on cancer incidence — in silico and in vitro safety evaluation

    Get PDF
    Background: Angiotensin-converting enzyme inhibitors (ACE-I) and their pharmacologically related sartans have been associated with an increased cancer incidence in several clinical observations. In 2018, sartans were revealed as being significantly contaminated with nitrosamines. Nitrosamines are potent human mutagens that can be formed ex vivo and, more concerningly, also in vivo from nitrosatable drug precursors. Their formation in sartans may justify the reported cancer risk and, by analogy, this may also apply to ACE-Is. Materials and methods: We investigated a commonly used ACE-I, ramipril (RAM). We checked its susceptibility to in vivo interaction with nitrite, potentially resulting in the generation of mutagenic N-nitrosamines. To that end, in silico simulation of mutagenicity of RAM nitroso-derivatives was performed using VEGA-GUI software. Then, the Nitrosation Assay Procedure was conducted which served as a model of endogenous reaction. The resulting post-nitrosation mixtures were subjected to a bacterial reverse mutation test employing Salmonella typhimurium strains TA98 and TA100 with and without metabolic activation. Results: Our results showed that studied samples did not induce point mutations in the test bacteria, regardless of the catalytic cytochrome activity. Conclusion: We concluded that RAM endogenous nitrosation is not the reason for increased cancer incidence. However, other ACE-Is must be verified in a similar manner

    Developmental anomalies in the smooth snake, Coronella austriaca Laurenti, 1768 (Squamata, Colubridae) from Poland

    No full text
    We present four cases of rare developmental anomalies in the smooth snake Coronella austriaca Laurenti, 1768 from western Poland. These include brachycephaly, lordosis, a supernumerary row of ‘ventral’ scales, and the third reported case of dicephalism in snakes from Poland. All the cases are supported by X-ray radiography. One of the possible explanations for these anomalies is a low genetic variation in populations from western Poland
    corecore