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Abstract

Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term

is not limited only to the modification of chromatin and DNA but also relates to some RNAs,

like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular

modifiers.  Mobile  RNAs,  as  a  free  form  or  encapsulated  in  exosomes,  can  regulate

neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs

as epigenetic elements of transmission information and message of life.

One of the amazing phenomena is  long non-coding microRNA-host-genes  (lnc-MIRHGs)

whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs

(miRNAs).  MIR31HG  functions  as  a  modulator  of  important  biological  and  cellular

processes  including  cell  proliferation,  apoptosis,  cell  cycle  regulation,  EMT  process,

metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases,



the  role  of  MIR31HG  is  documented  only  by  one  study  and  there  is  a  lack  of  exact

description of molecular pathways implicated in these processes, and for some of them, such

as response to irradiation, no studies have been done.

In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its

known function and its potential uses as a biomarker in oncology.
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Long non-coding RNAs are important players in cellular function

The word epigenetics for most is the synonym for changes in the chromatin structure

and DNA. However, it has changed in the last decades, and new elements of cellular control

in  response  to  physiological  or  pathological  signals  have  transformed  our  knowledge

considering epigenetics. Now, in the “modern era of epigenetic research”, we look not only at

the chromatin and DNA state but also, which seems more fascinating, the action of various

molecular regulators, such as non-coding RNA (ncRNA) [1] (Fig.  1). ncRNAs consist  of

constitutive  RNAs:  tRNA,  rRNA,  snRNA,  snoRNA,  and  a  group  of  regulatory  RNAs:

siRNA, piRNA, miRNA, NAT, circRNA, and lncRNA [2–4]. Though long non-coding RNAs

(lncRNAs) are not translated into proteins, they become over time valuable and significant

molecules. The lncRNAs consist of over 200 nucleotides and their activity enables them not

only to interact with proteins and other RNAs but also to regulate gene transcription and

expression through changes in the structure of chromatin [5, 6]. Specified types of lncRNAs

play a role in signaling, decoying, guiding, and building scaffolds for proteins and other RNA

molecules [7].

Fragments  encoding  lncRNAs  can  occupy  intergenic  or  intragenic  positions.  Specific

intragenic genes can be located in intron, enhancer, promoter, or 3'UTR flanking regions [5,

6]. Here, it is important to mention that the lncRNAs of interest are closely related to genes

that are encoded in the vicinity of the paired mRNA, resulting in their interaction with each

other. lncRNAs appear to play an important role in the regulation of gene transcription in the

nucleus  or  subsequent  post-transcriptional  modifications  in  the  cytoplasm.  Despite  the

opportunities afforded by lncRNA research, many difficulties are still encountered in fully

understanding them due to their location in the genome. It should be noted that more than

50%  of  lncRNAs  are  long  intergenic  non-coding  RNAs  (lincRNAs)  with  no  annotated

proteins but some short peptides can also be found [8]. The direction of transcription and the



distance at which the transcript responsible for encoding protein is located from the lncRNA

lead to the division of this group of RNAs into four classes: i) located on the same strand, ii)

convergent, iii) divergent, and iv) isolated, which are located at least 50 kb from the closest

protein-coding gene [15]. The main challenges in understanding the mechanisms of lncRNAs

behavior  are  caused by different  expression  levels  depending on tissue  localization  [10],

frequent heterogeneity of isoforms, and numerous repeats in transcriptional initiation regions

[11]. Moreover, as lncRNAs have been shown to vary with different expression levels, the

specificity of their function in different cell types changes [12]. As it emerged, dysfunction of

the  activity  or  cellular  mechanisms  of  lncRNAs  may appear  through  pathological  states

including tumor progression through influence  not only on the chromatin structure but also

on several transcription factors  [13]. According to GENCODE, NCBI Refseq, LNCipedia,

and NONCODE number of lncRNAs’ genes is estimated between 56’946 to 17’952 locus

which gives 27’381 to 172’216 transcripts [14–17]. It is proven that aberration of both coding

and non-coding RNAs play a  crucial  role  in  cancer  biology [18].  lncRNAs regulate  cell

growth, cell  cycle,  cell  phenotype,  migration and invasion ability,  and apoptosis  [7].  The

functions and activity of lncRNAs are still being investigated. More and more new elements

are  added,  such  as  the  possibility  of  interaction  of  lncRNAs  with  RNAi  molecules,  for

example  UCA1,  CASC2,  GAS5,  FER1L4,  WDFY3-AS2,  TP53TG1,  FENDRR or  SNHG1

lncRNAs with miR-18a [19]. What is more interesting, lncRNAs, such as MIR31HG, can be

host genes for miRNAs and play a dual role as lncRNA and as a primary-miRNA transcript.

MIR31HG is a member of long non-coding microRNA-host-genes

MIR31 host gene (MIR31HG) belongs to a group of long non-coding microRNA-host-

genes (lnc-MIRHGs) distinguished from lncRNAs due to coding the microRNA gene and

transcript.  MIR31HG functions in two specified RNA forms, as a long transcript, lncRNA,

and  as  a  host  gene,  which  under  processing  is  changed  into  a  short  non-coding  RNA

molecule,  microRNA named  miR-31.  Dhir  et  al.  estimated  the  distribution  of  miRNA

between lncRNA and protein-coding genes and it is 82.5% and 17.5%, respectively. These

lncRNAs can be divided into lincRNA (57.1%), pseudogene (13.2%), antisense (16.0%), and

other (19.0%) types of transcripts. Moreover, these lncRNAs are the source of about 17.5%

of miRNAs in humans [20].

It should be noted that lnc-MIRHGs are an under-studied class of lncRNAs in contrast

to the well-known microRNAs which are hosted by them [21]. 



It is worth mentioning that miRNAs are transcribed as pri-miRNAs whose structure

includes  a  terminal  loop,  stem,  and  50  and  30  single-stranded  overhangs  at  the  ends.

According to miRbase and GENCODE, there are 1’917 human miRNA genes, 1’917  hairpin

precursors, and 2’654 mature sequences, and 1’881 miRNA genes [22]. Pri-miRNA does not

perform the  gene  silencing  function,  so  it  is  post-transcribed  through  canonical  or  non-

canonical  miRNA biogenesis  pathways  [23].  miRNAs,  concerning their  relationship  with

MIRHGs,  can  be  categorized  into:  i)  intronic,  ii)  exonic,  ii)  exon-intron  junction  (SO-

miRNAs), and iv) intergenic miRNAs. These localizations in the gene and genome influence

their biogenesis [21]. There are two main proposed biogenesis models of MIRHG and its

intragenic miRNA: i) synergetic model which includes mirtron processing, cooperative of the

splicing  machinery  and  microprocessor,  and  a  splicing-independent  manner  of  miRNA

production with the presence of splicing factors, and the second model, ii) competition model

where miRNA production is  alternative- and non-alternative-splicing-mediated.  A detailed

description of these two models is presented by Sun et al. [21]. It was shown that there is a

correlation in  expression between the miRNA and the corresponding MIRHG. Moreover,

miRNA molecules,  which  are  usually  located  within  50  kb,  are  derived  from  a  single

transcript. When miRNAs originate from an intron region, their expression is often correlated

with  MIRHG expression  [26].  It  should  be noted that  the  expression  of  MIRHG can be

regulated by tumor cells, more specifically by the promoters. The changes in methylation of

the above promoters result in an altered expression of the encoded miRNA [27]. Moreover, in

the case of intragenic miRNAs and their host, a negative feedback loop can be created which

regulates the level of both transcripts [21]. It is worth noting that the expression of miRNA

and  MIRHG  pairs  is  not  always  related  in  this  way,  but  in  some  cases,  it  offers  great

diagnostic possibilities [27]. 

The function of MIRHGs as lncRNA transcripts alone is dicussive and some evidence

indicates  that  they function as  primary transcripts  of  miRNAs.  On the  other  hand,  some

authors show the miRNA-independent role of lnc-MIRHGs such as MIR22HG, MIR100HG,

MIR205HG/LEADeR, RMST, CYTOR, LINC01138, LINC-PINT, MIR503HG, NEAT1, PVT1,

H19 or MIR222HG, which are fully described by Sun et al. [25]. MIRHGs can be categorized

as oncogenes or tumor suppressors, but this function can be specific to the type of cancer.

MIRHGs can: i) act as ceRNA elements, ii) interact with DNA elements, or iii) with proteins

as well as vi) regulate the interaction with proteins [25]. All these capabilities and functions

make  them an  astonishing  group  of  RNA molecules.  Therefore,  in  this  review  we  will

continue to focus on one of them, MIR31HG, presenting the current state of knowledge.



MIR31HG — localization in the genome and biogenesis

The MIR31HG molecule has been known in the past by names: LOC554202, hsa-lnc-

31, or lncHIFCAR. It is localized on chromosome 9 and consists of 4 exons. The length of the

whole MIR31HG is about 150–106 Kb [28, 29]. According to GeneCards The Human Gene

Database, the latest assembly of genomic locations shows that MIR31HG Gene is situated on

the minus strand orientation on chr9:21’380’073-21’591’766 (GRCh38/hg38) and its size is

estimated as 211’694 bases [29]. Based on GeneHancer (GH) data, 3 different enhancers and

2  different  promoter/enhancer  regions  were  distinguished  for  the  miR31HG gene,  which

creates regulatory elements and has the transcription factor binding sites such as: different

TRIM, ZNF, MYC, STAT3, ZEB2, NANOG or EZH2 proteins [29].

MIR31HG is over 200 nucleotides long and it is transcribed by RNA polymerase II

and  the  mature  transcript  is  polyadenylated.  Augoff  et  al.  showed  that  the  MIR31HG

(LOC554202) transcript is 2’246 bp long and it does not encode any protein products [27].

Moreover, the MIR31HG gene does not encode any short peptides which could be produced

by this type of transcript [29]. These features cause MIR31HG to be indisputably classified as

a long non-coding RNA (lncRNA). However,  MIR31HG belongs to the unique subtype of

lncRNAs because, in the first intron of  MIR31HG, it harbors a sequence of other type of

ncRNA molecule which is classified as a short-noncoding RNA, named miR-31. It should be

noted that this first intron contains a CpG island, which is responsible for the transcription

regulation  of  both  types  of  ncRNA molecules  [27].  What  is  interesting,  the  MIR31HG

transcript  is  not  post-translationally modified and 32 different  transcriptional  variants  are

distinguished with a length between 287 and 10’980 bp. It should be noted that no orthologs

or paralogs for MIR31HG have been identified up to date [29]. 

The  expression  level  of  MIR31HG is  tissue-specific  and  according  to  the  GENE

NCBI, the highest expression is observed in normal tissue taken from the urinary bladder and

the lowest in the pancreas, liver, and heart [28]. 

The biological function of MIR31HG

It  is  known  that  MIR31HG plays  an  important  role  in  cellular  processes  whose

disturbance causes cancerogenesis or increases the rate of this process. The most described,

where MIR31HG is involved, are cell proliferation, cell cycle, invasiveness, EMT process as

well  as  apoptosis.  However,  MIR31HG has  also  been  described  in  the  context  of

angiogenesis, hypoxia, senescence, or inflammation (Fig. 2).



Cell proliferation and cell cycle

One  of  the  most  characteristic  biological  functions  linked  with  MIR31HG is  its

influence on cellular proliferation. Nie et al. were the first to observe that upregulation of

MIR31HG caused lower cell proliferation of gastric cancer cells  in vitro and in vivo and its

knockdown caused a reversed effect partly by regulating  E2F1 and  p21 [30]. Similarly, in

HNSCC (head and neck squamous cell carcinoma) cells the knockdown of MIR31HG affects

proliferation, cell cycle arrest in G1 or S phase, and apoptosis. This effect was caused by

decreasing expression of  HIF1A and  CCND1,  and increasing  p21 on mRNA and protein

levels [31]. However, the opposite effect was observed in the case of breast cancer, where

silencing  of  MIR31HG expression  inhibits  the  proliferative  ability  of  the  cells,  and  its

function is linked with the POLDIP2 expression level [32]. Similarly, in lung squamous cell

carcinoma  (LSCC),  inhibition  of  MIR31HG causes  reduced  cell  proliferation,  but  the

molecular  way  was  not  clearly  explained  [33].  Another  study  showed  that  MIR31HG

knockdown  inhibits  not  only  cancer  cell  migration  but  also  colony  formation  and  cell

proliferation [34].

In addition to the tumors’ model, also in the case of human periodontal ligament stem cells,

the  influence  of  of  MIR31HG on proliferation  was found.  Methylation of  the  MIR31HG

promoter  induced  by  mechanical  force  causes  reduced  expression  of  MIR31HG and

upregulation of IL-6, DNMT1, and DNMT3B. The changes in the stem cells’ proliferation can

be overcome by DNMT1 and DNMT3B knockdown, which interact with the upstream region

of the MIR31HG promoter and induce its expression [35]. 

Invasiveness and EMT process

The migration and invasive ability are also linked with  MIR31HG. It caused higher

invasiveness of breast cancer cells [32] as well as of lung cancer cells [33]. It was observed

that  in  the  case  of  non-small-cell  lung  carcinoma  (NSCLC),  reduction  of  MIR31HG

expression was associated with the EMT process and manifested by reduction of Twist1 and

Vimentin expression and upregulation of E-cadherin. Authors stated that  MIR31HG causes

changes in the Wnt/β-catenin signaling pathway by reduction of  GSK3β and  β-catenin and

also its knockdown was linked with phosphorylation of GSK3β [33]. It should be noted that

MIR31HG, depending on the cellular state, does not induce cancer cell invasion but promotes

paracrine senescence [36]. The role of MIR31HG in the EMT process was also observed in

osteosarcoma, where upregulation of  MIR31HG caused down-regulation of  miR-361.  This

effect  was  manifested  by  upregulation  in  the  protein  levels  of  miR-361's  target  genes,



vascular endothelial growth factor (VEGF), forkhead box M1 (FOXM1), and Twist in in vitro

model and patients samples, as well as by downregulation of E-cadherin observed in cell

lines after upregulation of MIR31HG [37].

Apoptosis

Feng et al. based on nasopharyngeal carcinoma indicated that the knockdown of MIR31HG

causes inhibition of apoptosis by negative regulation of the  PI3K/AKT signaling pathway

[38]. Moreover, based on U2OS and Saos-2 cell lines it was indicated that apoptosis could be

regulated by the expression level of miR-361 and its targets, VEGF, FOXM1, and Twist, as

well as by changes in anti-apoptosis of B-cell lymphoma 2 (BCL2) and cyclin D (CCND1)

proteins levels whose expression was inhibited by artificial up-regulation of MIR31HG [37]. 

Inflammation

Gao  et  al.'s  studies  identified  the  elevation  of  MIR31HG in  psoriatic  skin.  The

expression  of  two  types  of  keratin,  KRT6 and  KTR16,  was  significantly  up-regulated  in

keratinocytes from patients with psoriasis in comparison to normal samples, and MIR31HG-

dependent. As mentioned before, also the cell cycle was changed after MIR31HG silencing in

keratinocytes and it was shown that there were more keratinocytes in the G2/M phase relative

to cells in the S phase, indicating that  MIR31HG knockdown inhibits the proliferation of

HaCaT  keratinocytes.  Moreover,  it  was  indicated  that  stimulation  of  proinflammatory

interleukin 17A (IL-17A), interleukin 22 (IL-22), tumor necrosis factor alpha (TNF-α), and

interleukin 1 alpha (IL-1α) cytokines was able to elevate MIR31HG expression. It should be

noted  that  BAY,  NF-κB inhibitor,  and  p65 regulations  additionally  showed  that  NF-κB

activation has an impact on MIR31HG [39].

Senescence

Senescence can also be induced in the presence of oncogenes as a response aimed at

tumor suppression, such a mechanism is called oncogene-induced senescence. A group of

researchers has shown that  MIR31HG is also involved in this induction [40]. Montes et al.

based on cell models, showed that MIR31HG plays a dual role depending on the localization

in  cytoplasm and nucleus.  MIR31HG is  overexpressed  and translocates  to  the  cytoplasm

during  BRAF-induced  senescence  and  by  kinase  RSK  causes  phosphorylation  of

YBX1.Finally, it changes the senescence-associated secretory phenotype (SASP) of cells by

IL1A translation activation [41].



MIR31HG can be used as a biomarker

The potential  role of  MIR31HG as a biomarker was analyzed on both the Cancer

Genome Atlas (TCGA) data and collected samples by specified research groups or cell lines.

However, independent research about the same cancer type was done in only a few cases [33,

34, 42–53]. A growing number of studies indicate that MIR31HG plays an important role in

cancer as an oncogene or as a suppressor. It was shown that MIR31HG is down-regulated in

gastric cancer [30], bladder cancer [34, 42], hepatocellular carcinoma [57], pancreatic ductal

adenocarcinoma  [58],  and  glioblastoma  [65].  Moreover,  up-regulation  of  MIR31HG was

indicated  in  the  case  of  breast  cancer  [32],  head  and  neck  cancer  cancers  [31,  67,  68],

melanoma [54], cervical carcinoma [56], osteosarcoma [57], non-small cell lung cancer [33,

43, 44], lung adenocarcinoma [44–47], colorectal cancer [48–51], thyroid cancer [52, 53], as

well  as  papillary  thyroid  cancer  [64].  It  should  be  noted  that  two  independent  studies

checking the role of  MIR31HG in esophageal squamous cell carcinoma indicated opposite

expression levels of this lncRNA [59, 60].

MIR31HG can be used as a diagnostic biomarker and it is detectable in tissue as well

as in biological fluids such as plasma [31, 60]. Moreover, MIR31HG could describe the more

invasive types  of  cancer,  with advanced tumor–nodules–metastases  (TNM) stages,  lymph

node invasion as well as distant metastasis [31, 32, 43, 54, 57, 59, 60, 62] and its higher

expression is  associated with worse disease-free and overall  survival  (OS).  However,  the

opposite meaning of MIR31HG as a prognostic biomarker is observed in the case of bladder

cancer [42], hepatocellular carcinoma [57], esophageal squamous cell carcinoma [59], and

gastric cancer [30]. For these cancers, a higher expression level of  MIR31HG is negatively

correlated with more advanced TNM-stage [30, 42, 57], with lower tumor nodule number,

vascular invasion [57], metastasis [57, 59] or poor tumor differentiation [59]. Analysis  of

patients’ survival revealed that the higher expression levels of  MIR31HG were associated

with longer survival for these types of cancers [30, 57, 59].

In the end, it should be noted that Chang et al. indicated potential features of MIR31HG as a

predictive biomarker, and higher levels of MIR31HG were associated with increased cisplatin

resistance [55], but there is only one study exploring this problem. All studies and results

describing MIR31HG as a biomarker are included in Table 1.

Table 1. MIR31 host gene (MIR31HG) as a potential biomarker in different types of cancers



Type

of

cance

r

Metho

ds  of

detecti

on

Sample

type

Type

of

biom

arker Description Ref.



Head

and

neck

cance

r 

qRT-

PCR

60  paired

normal  and

adjacent

cancer

samples;

plasma;

FaDu  and

Cal-27  cell

lines

diagn

ostic,

progn

ostic

Overexpressed in cancer tissue and plasma of the

early and advanced stages of patients

Correlated  with  advanced  T-stages  and  lymph

node invasion

Lower  level  was  associated  with  better  OS  and

RFS

MIR31HG regulated  cell  cycle  progression  and

apoptosis by targeted HIF1A and p21 [31]

Mela

nom

a

qRT-

PCR

55  patients'

tissues  and

Human

Epidermal

Melanocytes

(cell line)

diagn

ostic,

progn

ostic

Overexpressed in cancer tissue and cell lines

Associated with lymph nodes invasion

Distal metastasis and higher TNM-stages

Lower  MIR31HG expression  was  characteristic

with  lower  malignancy  by  decreased  cell

proliferation, and migration and invasion rates [54]

Brea

st

cance

r

qRT-

PCR

50  paired

normal  and

adjacent

cancer

samples  and

T47D,  BT-

474,

SUM149-

Luc, BT549,

and  MCF-

10A  cell

lines

diagn

ostic,

progn

ostic

Overexpressed in cancer tissue and cell lines

Correlated with the patient’s tumor diameter

Correlated  with  tumor  TNM-stages  and  lymph

node metastasis

Lower level associated with better survival

MIR31HG influenced  on proliferation,  migration

and invasion abilities by regulation of POLDIP2 [32]

Oral

squa

mous

cell

carci

nom

a

TCGA

(RNAs

eq);

qRT-

PCR

520  cancer

and  44

normal

TCGA

samples;

Cytobrushed

samples  and

diagn

ostic,

progn

ostic

and

predi

ctive

Overexpressed in cancer tissue and cell lines

MIR31HG enhanced  oncogenic  phenotype

especially by enrichment of Wnt pathway

Lower level associated with better survival

Correlated  with  higher  proliferation  and  wound

healing closure rates

Higher  MIR31HG associated  with  increased

[55]



matched

mucosa

from  28

patients  and

OC3,  OC4,

OC5,  SAS,

OECM1,

FaDu,  and

NOK  cell

lines cisplatin resistance

Cervi

cal

carci

nom

a

TCGA

(RNAs

eq);

qRT-

PCR

24  normal

and  104

lesions/canc

er  samples

from  GEO

and  306

cancer  and

13  normal

TCGA  data

sets;  46

pairs  of

cervical

cancer

tissues  and

adjacent

patients'

tissues  and

CasKi,

SiHa,  C33A

and

HcerEpic

cell lines

diagn

ostic,

progn

ostic

Overexpressed in cancer tissue and cell lines,

Knockdown of  MIR31HG suppressed cell growth

and invasion

MIR31HG regulated  miR-361-3p and  through  it

modulated epithelial membrane protein 1 (EMP1)

mRNA expression level [56]



Oste

osarc

oma

qRT-

PCR

40  paired

normal  and

adjacent

cancer

samples

patients'

tissues  and

143B,

MG63,

U2OS,

Saos-2  and

hFOB1.19

cell lines

diagn

ostic

Overexpressed in cancer tissue and cell lines

Higher  MIR31HG expression  associated  with

higher tumor stages and distant metastasis

miR-361 was  sponged  by  MIR31HG and  down-

regulated 

Knockdown of  MIR31HG restored the expression

of miR-361 in cell lines

miR-361 induced cell  apoptosis  and G1/S arrest,

inhibited proliferation and migration in Saos-2 and

U2OS cells, and MIR31HG had reversed effect

MIR31HG by  regulation  of  miR-361 targeted

VEGF,  FOXM1 and  Twist,  and  caused

upregulation  of  BCL2,  CCND1 and  EMT

phenotype

Higher  level  of  VEGF, FOXM1 and Twist  were

positively correlated with MIR31HG in patients’

samples

MIR31HG promoted tumor growth by regulation

of miR-361 and VEGF, FOXM1 and Twist in vivo [57]

Blad

der

cance

r

TCGA

(RNAs

eq);

qRT-

PCR

102  FFPET

patients'

samples  and

370  TCGA

patients, and

SCaBER,

UMUC3,

T24, RT112,

RT4  and

UROtsa  cell

lines

diagn

ostic,

progn

ostic

Decreased  in  cancer  tissue  and  cell  lines  and

depended on the spliced variants (MIR31HGΔE1

and MIR31HGΔE3)

MIR31HGΔE3 highly expressed in the case of the

basal subtype

Higher  expression  of  MIR31HGΔE1  and

MIR31HGΔE3 associated with worse OS and DFS

Knockdown  of  MIR31HG inhibited  cell

proliferation,  colony  formation,  and  migration

abilities [34]



Colo

recta

l

cance

r

GEO

and

TCGA

(Arrays

/RNAse

q);

qRT-

PCR

nearly  2000

CRC

biopsies  and

preclinical

models;

patient-

derived

xenografts;

cell lines

diagn

ostic,

progn

ostic

Strongly correlated with miR-31-5p

MIR31HG changed  in  12%  of  patients  and

associated  with  depletion  of  CMS2-canonical

subgroup and shorter RFS

5-year RFS for patients (stage II subgroup) with

MIR31HG outlier  status  lower  than  those  with

normal-like expression

MIR31HG outlier  status  associated  with  worse

outcome  in  clinical  high  risk  groups  (CMS4-

mesenchymal gene expression subtype)

Patients  with  MIR31HG outlier  expression  had

reduced  expression  of  MYC targets,  higher

expression  of  epithelial-mesenchymal  transition,

TNF-α/NFκB,  TGF-β,  and  IFN-α/γ gene

expression signatures

Prognostic value of  MIR31HG outlier status was

independent  of  cytotoxic  T  lymphocyte  and

fibroblast infiltration [49]

Non-

small

cell

lung

cance

r

qRT-

PCR

88  paired

normal  and

adjacent

cancer

samples

patients'

tissues  and

A549,

H1299,

NCIH460

and  16HBE

cell lines

diagn

ostic,

progn

ostic

Overexpressed  in  tumor  tissues  compared  with

adjacent normal tissues

Higher  MIR31HG expression  associated  with

histological  differentiation  grade,  lymph  node

metastasis and higher TNM-stages

Higher  MIR31HG expression  associated  with

worse OS

MIR31HG knockdown inhibited proliferation and

invasion abilities

Lower expression suppressed the EMT phenotype

(reduced  Twist1 and  Vimentin,  and  increased  E-

cadherin expressions)

Inhibition of the Wnt/β-catenin signaling pathway

(reduced expression of GSK3β and β-catenin, and

increased phosphorylation of (p)-GSK3β) [33]



Lung

aden

ocarc

inom

a

qRT-

PCR

132 patients'

tissues  and

20  adjacent

non-

cancerous

samples, and

A549,

H2228,

H1975,

H1299  and

BEAS-2B

cell lines

diagn

ostic,

progn

ostic

Overexpressed in cancer tissues and cell lines

Associated  with  higher  TNM-stages  and

differentiated degree

Higher MIR31HG was an independent unfavorable

OS factor

Knockdown  MIR31HG caused inhibition of cells

proliferation  and  blocked  cell-cycle  and  didn't

changed cell apoptosis

No  correlation  between  MIR31HG and  miR-31

expressions and knockdown of  MIR31HG had no

effect on the miR-31 level [45]

Non-

small

cell

lung

cance

r

qRT-

PCR

50  paired

normal  and

adjacent

cancer

patients'

tissues  and

H1299,

A549,

H1975,

H460  and

BEAS-2B

cell lines

diagn

ostic,

progn

ostic

Overexpressed in tumor tissues and cell lines

SP1, transcription factor, binds to promoter region

of MIR31HG and induces its expression

Higher  MIR31HG was  an  independent  predictor

worse OS

MIR31HG associated  with  less  differentiation

degree and higher TNM-stages

Knockdown  of  MIR31HG inhibited  migration,

invasion and metastasis abilities,

Overexpression  of  MIR31HG reduced  the

expression  of  miR-214 and  induced  cancer

progression [43]

Colo

recta

l

cance

r

qRT-

PCR

30  paired

normal  and

adjacent

cancer

patients'

tissues  and

RKO,

SW480,

SW620,

diagn

ostic,

progn

ostic

Overexpressed in tumor tissues and cell lines

Associated with worse prognosis

Overexpression  of  MIR31HG induced

proliferation,  growth,  invasion,  glycolysis  and

lung metastasis and angiogenesis observed in vitro

and in vivo

MIR3HG upregulated  higher  expression  of  YY1

(mRNA and protein)

Forced  overexpression  of  YY1 induced

[50]



LoVo  and

HCT116 cell

lines

overexpression of enhanced MIR31HG

MIR31HG inhibits  miR-361-3p which  has  and

anti-tumor effect by targeting YY1

Blad

der

cance

r

qRT-

PCR

55  paired

normal  and

adjacent

cancer

patients'

tissues  and

T24,  5637,

UM-UC-3,

SW780  and

SV-HUC-1

cell lines

diagn

ostic

Downregulated in tumor tissues and cell lines

MIR31HG negatively associated with TNM-stages [42]

Thyr

oid

cance

r

qRT-

PCR

29  paired

normal  and

adjacent

cancer

patients'

tissues  and

SW579,

TPC-1,

HTH83  and

Nthy-ori  3–

1 cell lines

diagn

ostic,

progn

ostic

Overexpressed in tumor tissues and cell lines

Higher MIR30HG associated with worse prognosis

Knockdown  of  MIR30HG reduced  proliferation,

invasion,  migration,  promoted  cell  apoptosis  in

vitro and tumor growth in vivo

MIR30HG regulated  the  expression  of  miR-761

which in turn regulates MAPK1 [52]

Hepa

tocell

ular

carci

nom

a

qRT-

PCR

42  paired

normal  and

adjacent

cancer

patients'

tissues  and

SMMC7721

,  HepG2,

diagn

ostic,

progn

ostic

Downregulated in tumor tissues and cell lines

Higher expression associated with better OS

Higher  expression  correlated  with  lower  tumor

nodule number, lower vascular invasion and lower

TNM-stages

Overexpression  of  MIR31HG reduced

proliferation and metastasis in vitro and in vivo

MIR31HG regulates  miR-575 expression,  which

[57]



Huh7,  SK-

hep1  and

293  T

(HEK)  cell

lines

has  oncogenic  properties,  and  influences  on  its

target — ST7L

There  was  a  reciprocal  inhibition  between

MIR31HG and  miR-575 in  the  same  RISC

complex

Panc

reati

c

duct

al

aden

ocarc

inom

a

GEO

(Array)

;  qRT-

PCR

GEO  45

paired

normal  and

adjacent

cancer

patients'

tissues  and

AsPC-1,

PANC-1,

CFPAC-1,

Hs  766  T,

SW  1990,

MIA  PaCa-

2,  BxPC-3

and  hTERT-

HPNE  cell

lines

diagn

ostic

Overexpressed in tumor tissues and cell lines

Knockdown  of  MIR31HG  reduced  cell  growth,

induced apoptosis  and G1/S arrest,  and inhibited

invasion in vitro as well as tumor growth in vivo

miR-193b targets MIR31HG and they have inverse

correlation

MIR31HG may act as an endogenous “sponge” by

regulation of  miR-193b and its'  targets (CCND1,

Mcl-1, NT5E, KRAS, uPA, and ETS1) [58]

Esop

hage

al

squa

mous

cell

carci

nom

a

qRT-

PCR

185  paired

normal  and

adjacent

cancer

patients'

tissues

diagn

ostic,

progn

ostic

Downregulated in tumor tissues and cell lines

Lower expression MIR31HG associated with poor

differentiation,  advanced  lymph  node  metastasis

positive distant metastasis and higher TNM-stages,

Higher  expression  of  MIR31HG associated  with

better  OS  and  it  is  an  independent  prognostic

marker for survival [59]



Esop

hage

al

squa

mous

cell

carci

nom

a

qRT-

PCR

53  paired

normal  and

adjacent

cancer

patients'

tissues,  53

plasma

samples

from

patients  and

39  from

healthy

donors,  and

EC9706,

EC1  and

Het-1A  cell

lines

diagn

ostic,

progn

ostic

Overexpressed in  tumor tissues,  plasma and cell

lines

Expression  level  of  MIR31HG in  tissue  and

plasma  from  the  same  patient  was  positively

correlated

Higher expression observed in tissue and plasma

samples of patients with higher TNM-stages and

positive lymph node metastases

MIR31HG displayed  high  diagnostic  sensitivity

and specificity for predicting cancer occurrence

Knockdown  of  MIR31HG reduced  proliferation,

migration, and invasion abilities

Reduction  of  MIR31HG caused  inhibition  of

Furin and MMP1 [60]

Gast

ric

cance

r

qRT-

PCR

42  paired

normal  and

adjacent

cancer

patients'

tissues  and

SGC7901,

BGC823,

MGC803,

MKN45 and

GES-1cell

lines

diagn

ostic,

progn

ostic

Downregulated in tumor tissues and cell lines

Associated  with  larger  tumor  size  and advanced

pathological stages

Lower  MIR31HG expression  associated  with

worse PFS and OS

Overexpression  of  MIR31HG inhibited  cell

proliferation in vitro and tumor growth in vivo

Knockdown  of  MIR31HG promoted  cell

proliferation partly via regulation of E2F1 and p21

expressions [30]

Oral

squa

mous

cell

GEO

(array)

qRT-

PCR

GEO  22

normal  and

57  cancer

patients'

diagn

ostic,

progn

ostic

Overexpressed in tumor tissues

Higher level of  MIR31HG associated with worse

OS and RFS (independent prognostic predictor)

Overexpression  of  MIR31HG induced  pseudo-

[61]



carci

nom

a

tissues,  15

paired

normal  and

adjacent

cancer

patients'

tissues  and

SAS  cell

line

hypoxic phenotype

Knockdown  of  MIR31HG reduced  hypoxia-

induced  HIF-1α transactivation,  sphere-forming

ability, metabolic shift and metastatic potential  in

vitro and in vivo

MIR31HG directly  bound  and  facilitated  the

recruitment  of  HIF-1α and  p300 cofactor  to  the

target promoters

Ovar

ian

cance

r

TCGA

(RNAs

eq),

qRT-

PCR

352  TCGA

patients'

cancer

tissues,  and

TOV-21G,

A2780,

SKOV3, and

IOSE80  cell

lines

diagn

ostic,

progn

ostic

MIR31HG and  other  lncRNAs  (ACTA2-AS1,

CARD8-AS1,  HCP5,  HHIP-AS1,  HOTAIRM1,

ITGB2-AS1,  LINC00324,  LINC00605,

LINC01503, LINC01547, MIR155HG, OTUD6B-

AS1, PSMG3-AS1, SH3PXD2A-AS1, and ZBED5-

AS1) associated with OS

Those  lncRNAs  correlated  with  patient  age  at

initial  pathologic  diagnosis,  lymphatic  invasion,

tissues source site, and vascular invasion [62]

Colo

n

Canc

er

TCGA

(RNAs

eq)

166  TCGA

stage  II

colon cancer

patients

diagn

ostic,

progn

ostic

MIR31HG as well as WASIR2, miR-200a and miR-

155 overexpressed in cancer tissue

Lower  MIR31HG expression  associated  with

better OS

4  lncRNA-miRNA  signature  can  be  used  as

independent  prognostic  value of  OS for  stage II

colon cancer with high sensitivity and specificity

Correlated genes with  MIR31HG were associated

with the EMT process and the VEGFR3 signaling

in lymphatic endothelium pathways [63]

Colo

recta

l

Canc

er

TCGA

(RNAs

eq),

qRT-

PCR

TCGA  593

tumor  and

51  paired

normal  and

adjacent

cancer

diagn

ostic,

progn

ostic

MIR31HG as  well  as  LINC00461,  LINC01055,

ELFN1-AS1,  LMO7-AS1,  CYP4A22-AS1,

AC079612.1, LINC01351 associated with OS

Risk factors for the prognosis with high sensitivity

and specificity

The  index  based  on  the  7  survival-related  IRLs

[51]



patients'

tissues

were accurate in the prognosis monitoring

IRLs  index  were  correlated  with  a  tumor  status

and N-stage and immune cell infiltration of CD4+

T cells and dendritic cells

Papil

lary

thyro

id

cance

r

GEO

(array)

qRT-

PCR

GEO  136

normal  and

157  cancer

patients'

tissues,  50

paired

normal  and

adjacent

cancer

patients'

tissues

diagn

ostic

Five  upregulated  (ENTPD1,  THRSP,  KLK10,

ADAMTS9,  MIR31HG)  and  five  downregulated

(SCARA5,  EPHB1,  CHRDL1,  LOC440934,

FOXP2) genes

For this ten genes the most highly enriched GEO

terms were: extracellular exosome, cell adhesion,

positive  regulation  of  gene  expression,  ECM

organization,  tyrosine  metabolism,  complement

and  coagulation  cascades,  CAMs,  transcriptional

misregulation  and  ECM-receptor  interaction

pathways [64]

Lung

aden

ocarc

inom

a

TCGA

(RNAs

eq),

qRT-

PCR

TCGA  465

tumor  and

43  paired

normal  and

adjacent

cancer

patients'

tissues

diagn

ostic,

progn

ostic

MIR31HG ,  CEBPA-AS1,  GVINP1 and  RAET1K

were  selected  after  Cox  analysis  and  OS

prognostic  gene  signature  was  developed  with

high sensitivity and specificity

MIR31HG significantly  associated  with  survival

rate,

Four‐lncRNA signature  had  prognostic  value  to

predict  tumor  stage  T stage,  N  stage,  neoplasm

cancer and primary therapy outcome

494 genes, which were coexpressed with lncRNAs

of  the  risk  score  model,  were  associated  with

signal  transduction,  blood  coagulation,  pathways

in cancer and chemokine signaling pathways [47]

Glio

blast

oma

qRT-

PCR

diagn

ostic,

progn

ostic

MIR31HG deleted in over 73% of all GBMs

miR-31 status: 30.92% homozygous null, 42.68%

heterozygous and 26.40% wildtype

In  low  grade  gliomas  MIR31HG status:  6.96%

homozygous null, 27.04% heterozygous, and 66%

wild type

[65]



Loss  of  one  or  both  copies  of  MIR31HG

significantly reduced the levels of miR-31

Homozygous  MIR31HG deletions  predominantly

associated with Mes- and C-GBMs

MIR31HG deletions associated with shorter MMS

(Median  Months  Survival)  for  patients  with

primary GBM and for patients with Mes-GBM

CDKN2A deletions  associated  with  diminished

DFS times in all GBM, and patients with N-GBM

but  which  lies  adjacent  to  MIR31HG,  did  not

predict  shorter MMS in patients with Mes-GBM

or primary GBM

MIR31HG deletions  not  associated  with

diminished DFS

miR-31 inhibits  TRADD and consequently NF-κB

signaling and influencing on  MIR31HG promoter

containing three putative NF-κB binding sites

Lung

squa

mous

cell

carci

nom

a and

lung

aden

ocarc

inom

a

TCGA

(RNAs

eq)

504  LUSC

and  522

LUAD

samples

from TCGA

diagn

ostic,

progn

ostic

MIR31HG is  altered  as  deleted  gene  in  0.14

frequency in the case of LUAD

MIR31HG,  CDKN2A-AS1 and  LINC01600

predicted poor OS in LUAD

MIR31HG and  LINC01600 play  their  roles  in

female patients, while  CDKN2A-AS1 play its role

in male patients

Important molecular functions for both CDKN2A-

AS1 and  MIR31HG-coexpressed  genes  were

binding  and  catalytic  activity  —  the  top  two

enriched biological pathways were cellular process

and  metabolic  process,  and  the  most  enriched

pathway was the  P53 pathway;  IFNE,  CDKN2A

and MTAP

cBioPortal  analysis  results  showed that  all  three

coexpressed  genes  shared  very similar  alteration

[46]



patterns with CDKN2A-AS1 and MIR31HG

MTAP was  the  only  gene  located  between

CDKN2A-AS1 and MIR31HG.  CDKN2A was next

to,  and partially overlapped with,  CDKN2A-AS1,

and IFNE was located in the MIR31HG intron

Colo

n

Canc

er

GEO

and

TCGA

(Arrays

/RNAse

q)

1089  colon

cancer

patients

from  GEO

and  391

patients

from TCGA

diagn

ostic,

progn

ostic

MIR31HGincluded  in  as  one  of  the  recurrence-

associated six-lncRNAs (LINC0184, AC105243.1,

LOC101928168, ILF3-AS1, and AC006329.1)

Score  model  based  on the six-lncRNA signature

higher in the recurrent patients than non-recurrent

patients

lncRNA signatures effectively distinguish between

high and low risk of cancer recurrence

Only  combination  of  six  lncRNAs  gives  the

greatest predictive ability (accuracy rate of 72.2%

and AUC of 0.724)

Six-lncRNA  signature  was  independent  of

clinicopathological  factors,  has  potential  to

differentiated patients, with similar clinical stage,

into low and high risk subgroups

Patients with higher expression level of these six

lncRNAs displayed significantly higher recurrence

risk status and RFS

Functional  analysis  of  the  six  lncRNA signature

indicated implication of them into ATP metabolic

processes, cell proliferation and angiogenesis, cell

death, leukocyte differentiation [66]

Thyr

oid

Canc

er

GEO

and

TCGA

(Arrays

/RNAse

q),

57 PTC with

a  reference

sample

(pool  of  9

adjacent

normal

diagn

ostic,

progn

ostic

Upregulated in patients’ cancer samples

Correlated  with  M  and  N  stages  and  positive

lymph nodes examined status

MIR31HG overexpression  correlated  with  high

immune  infiltrate  levels  of  CD8+  T  cells,

macrophage,  neutrophil,  myeloid  dendritic  cells,

[53]



qRT-

PCR

thyroid

tissue) and 4

PTC  against

4  matched

adjacent

normal

thyroid

tissues  from

GEO  and

391  patients

from TCGA,

CAL62  and

SW579  cell

lines

and B cells

Knockdown  of  MIR31HG reduced  cell

proliferation and cycle progression

MIR31HG associated  with  metabolic  pathways,

vesicle-mediated  transport,  tricarboxylic  acid

cycle,  Hedgehog  signaling  pathway,  and  Hippo

signaling  pathway  including  CCND2,  CCND3,

SDHC, SDHD, SUCLA2, and SUCLG1

Colo

recta

l

cance

r

GEO

and

TCGA

(Arrays

/RNAse

q)

TCGA  647

tumor  and

51  paired

normal  and

adjacent

cancer

patients’

tissues  and

122

patients's

samples

from GEO

diagn

ostic,

progn

ostic

MIR31HG with  other  four  lncRNAs  (H19,

HOTAIR,  WT1‐AS,  and  LINC00488)  closely

related to the OS

Five‐lncRNA  signature  was  independent

prognostic marker of the high‐risk scores’ patients

which had poor survival rates

High‐risk  score  based  on  five-lncRNA signature

associated with more advanced TNM stages and

residual tumor

In the univariate  analysis  risk score of  the five‐

lncRNA model and some of clinical features (age,

TNM stages, residual tumor) were associated with

the OS

In  the  multi-variate  analysis,  the  five‐lncRNA

model displayed an independent prognostic factor

Patient’s  prognosis  separated  by  risk  score  and

TNM staging were different: patients with lower

risk  score  and  tumor  grade  displayed  better

prognosis

[48]



The  risk  score  and  clinicopathological  features

displayed better informative predict the patient’s 1,

3, 5‐year survival

Five-lncRNA model was associated with signaling

pathway  regulating  pluripotency  of  stem  cells,

WNT,  Hippo signaling  path-way,  basal  cell

carcinoma  and  colorectal  cancer,  negative

regulation  of  translation,  extracellular  space,

transcription  from RNA polymerase  II  promoter,

odontogenesis  and  negative  regulation  of

fibroblast proliferation

Oral

squa

mous

cell

carci

nom

a

GEO

(Arrays

)

167  OSCCs

and  45  oral

mucosa

from healthy

controls

from  GEO

and

validation

using  74

oral  cavity

squamous

cell

carcinoma

and  29

adjacent

normal

tissue;

GSE9844

with  26

tongue

squamous

cell

diagn

ostic

MIR31HG and  13  lncRNAs  (LOC441178,

C5orf66-AS1, HCG22, FLG-AS1, CCL14/CCL15-

CCL14,  LOC100506990,  TRIP10,  PCBP1-AS1,

LINC01315,  LINC00478,  COX10-

AS1/LOC100506974,  MLLT4-AS1,  and

DUXAP10/LINC01296) were validated in all three

datasets, and were upregulated

Its expression differs between HPV-positive OPC

and HPV-negative OPC, and is downregulated in

HPV positive ones

It is significantly differentially expressed between

subsites of OSCC (OPC vs. OCC)

miR31HG levels  between  smokers  and  non-

smokers were indicated

miR31HG was  not  validated  by  qRT-PCR  in

patients samples

[67]



carcinoma

and  12

matched

adjacent

normal

tissue  and

GSE6791

comprised

of  28

cervical

cancers,  42

head  and

neck cancers

and  14  site-

matched

normal  oral

tissue  from

GEO

Lung

squa

mous

cell

carci

nom

a and

lung

aden

ocarc

inom

a

TCGA

(RNAs

eq)

TCGA  504

tumor  and

46  paired

normal  and

adjacent

cancer

patients'

tissues

diagn

ostic,

progn

ostic

3'366  mRNAs,  79  miRNAs  and  151  lncRNAs

were  identified  as  involved  in  development  of

LUSC

Only  lncRNA  MIR99AHG positively  correlated

with  OS and  PLAU,  miR-31-5p,  miR-455-3p,

FAM83A-AS1,  and  MIR31HG were  negatively

associated with OS

Only  PLAU was  validated  using  qRT-PCR  and

was  upregulated  in  SK-MES-1  cells  compared

with 16-BBE-T cells

Changed  genes  were  associated  with  signal

transduction,  cell  adhesion,  blood  coagulation,

immune  response,  cell  proliferation,  apoptosis,

transmembrane  transport  or  small  molecule

metabolic processes [44]



Lary

ngeal

squa

mous

cell

carci

nom

a

Arrays

and

qRT-

PCR

39  pairs  of

LSCC

tissues  and

adjacent

non-

neoplastic

tissues,

microarray

results

deposit

(GSE84957)

diagn

ostic,

progn

ostic

1459 lncRNAs (846 up-and 613 down-regulated)

and  238  mRNAs  (1542  up-  mRNAs  and  839

down-regulated) were differentially expressed,

ITGB1,  HIF1A,  and  DDIT4 were  core  mRNAs

involved  in  matrix  organization,  cell  cycle,

adhesion, and metabolic pathway

MIR31HG was positively correlated with  HIF1A

and lncRNA NR_027340 was positively correlated

with ITGB1 [68]
qRT-PCR — real-time quantitative reverse transcription polymerase chain reaction; RFS —
relapse-free survival; OS — overall survival; TNM — tumor–nodules–metastases; TCGA —
Cancer  Genome Atlas;  EMT — epithelial  to  mesenchymal transition;  VEGF — vascular
endothelial growth factor; FOXM1 — forkhead box M1; DF — disease-free survival; CMS
—  consensus  molecular  subtype;  GSK3β  —  glycogen  synthase  kinase  3  beta;  PFS  —
progression-free survival; lncRNAs — long RNAs; IRLs — immune-related lncRNAs; ECM
— extracellular  matrix;  CAMs — cell  adhesion  molecules;  Mes-GBM — mesenchymal
glioblastoma; LUAD — Lung adenocarcinoma; LUSC — lung squamous cell carcinoma;
AUC — area under  the curve; ATP — adenosine triphosphate;  PTC — papillary thyroid
carcinoma; HPV — human papilloma virus; OSCC — oral cavity squamous cell carcinoma;
OPC  (oropharyngeal  cancer;  OCC  (oral  cavity  cancer);  LSCC  —  lung  squamous  cell
carcinoma

“Small but crazy”: miR-31 

miR-31 is  a short  non-coding RNA, classified as microRNA (miRNA), and is  the

product of specific cleavage of  MIR31HG transcript. miRNA molecules can be responsible

for controlling many genes in a differentiated way [69, 70].  miR-31 affects many processes

not only in normally functioning cells, but is also important in disease and cancer processes.

Based on results obtained from different tissues and cancer cell lines it was demonstrated that

miR-31 exhibits  a  whole  spectrum  of  expression  depending  on  tissue  type.  It  is  worth

mentioning that the miR-31 precursor was present in all tested cell lines but its mature form

was predominantly found in  tumor  cell  lines  [71].  miR-31 regulates  cell  proliferation  by

affecting  the  genes  responsible  for  this  process,  such as  LATS1,  and  CREG,  in  vascular

smooth muscle cells [72, 73]. An excellent example is the mechanism studied in colon cancer



cells when miR-31 overexpression targets E2F2, which acts as a tumor suppressor on colon

cancer cell proliferation [74]. As for Ewing sarcoma, the effect of miR-31 was identified as a

tumor suppressor. In cell lines transfected with miR-31, there was a significant reduction in

Ewing sarcoma cell proliferation, as well as increased apoptosis resulting in a decrease in

tumor invasiveness [75]. The expression level of miR-31 in cervical cancer, CIN, and normal

uterine tissues was also examined. The results proved that the expression in cancer cells was

elevated  compared to  non-tumor  cells,  and in  addition,  this  phenomenon appeared  to  be

associated with the occurrence of lymph node metastasis (LNM). It was demonstrated that

such an effect increases cell proliferation, and cell migration, and thus invasiveness is also

significantly  increased,  indicating  that  miR-31 acts  as  an  oncogene  in  this  case  [76].  In

patients with non-small cell lung cancer (NSCLC), a relationship was discovered between the

expression  levels  of  MIR31HG and,  consequently,  miR-31,  and  the  proliferation  and

clonogenic growth of tumor cells. The study showed that reducing their expression in vitro

also reduces the growth of NSCLC cells, supporting the fact that  miR-31 had an oncogenic

effect [77]. 

Moreover,  miR-31 plays an important role in the induction of senescence in breast cancer

cells. Obtained results showed that overexpression of  miR-31 affected the repression of the

polycomb group (PcG) protein BMI1, accompanied by the induction of cell aging. This offers

the prospect of manipulating  miR-31 expression to control senescence and oncogenesis in

breast cancer [78]. Few studies are based on healthy tissues and the effects on the aging of

non-tumorigenic cells.  For example,  miR-31 influences aging by regulation of dystrophin

protein. Increased expression of miR-31 resulted in direct inhibition of the translation of this

protein  which  causes  aging  and  damaged  processes  in  muscle  cells  [79].  Capri  et  al.

examined  the  miRNA expression  levels  to  determine  the  age  match  between  donor  and

recipient in the case of hepatocytes. It was indicated that miR-31 is hyper-expressed in older

donors,  at  levels  up  to  4.5  times  higher  than  in  younger  individuals.  Interestingly,  these

results  were  only  noted  in  male  patients,  and  female  samples  showed  only  a  trend  of

increased expression with age [80]. Moreover, it was indicated in the case of endothelial cells

(umbilical cord-derived), that the fold change of  miR-31 was one of the most upregulated

miRNAs during the aging process [81].

It should be noted that miR-31 regulates cell differentiation and has a role in determining cell

fate. Li et al. investigated neural stem cells (NSCs) and the process of their differentiation

into motor neurons (MNs) and correlated changes in miR-31 expression with different states.

Initial  studies  showed  high  levels  of  expression  of  this  molecule  in  NSCs  derived,  for



example,  from  the  spinal  cord,  while  much  lower  levels  in  MNs.  Comparison  of  the

expression  profiles  led  to  the  conclusion  that  high  levels  of  miR-31 have  a  stemness-

maintaining effect in NSCs by inhibiting differentiation, especially in MNs [82]. Neuronal

precursor  cells  (NPCs)  appeared  to  be  another  cell  in  which  miR-31 plays  a  role  in

differentiation. It was shown that Lin28, c-Myc, SOX2, and Oct4 act to inhibit the activity and

expression  of  miR-31,  consequently,  impairing  the  process  of  NPC  differentiation  into

astrocytes and astrocyte maturation itself in gliomas. As later analyses showed miR-31 also

downregulates selected stem cell factors mentioned above, which may suggest a reciprocal

control of these molecules in astrocytogenesis, where miR-31 plays a key role [83].

However, based on the PubMed.org database, only 5 studies took into account both types of

transcripts,  miR-31 and  MIR31HG.  Tu  et  al.  observed  co-upregulation  of  miR-31 and

MIR31HG in oral squamous cell carcinoma, with a linear correlation between both ncRNAs

estimated to R = 0.304 and p = 0.047 in patients’ samples [84]. Another study, done by Chang

et  al.  showed that  artificial  upregulation of  MIR31HG caused the significant elevation of

MIR31HG and  miR-31 in  two  cancer  cell  lines  [85].  Surprisingly,  Qin  et  al.,  in  lung

adenocarcinoma, indicated no correlation between  MIR31HG and  miR-31,  and the down-

regulation  of  MIR31HG did  not  cause decreased  levels  of  miR-31  [45].  Moreover,  some

evidence  indicates  that  MIR31HG does  not  always  regulate  the  level  of  miR-31.  It  was

pointed out that MIR31HG regulates miR-361 and downstream targets influencing cellular

phenotype of osteosarcoma cell lines [37].

It  is surprising that for some studies the authors did not analyze the common correlation

between  miR-31 and  MIR31HG, which makes it difficult to assess the actual interaction of

these molecules with each other [86]. 

Not only miR-31, but also other miRNAs interact with MIR31HG

lncRNAs can not only affect protein-coding genes, but also other RNAs. The “sponge

effect”, as it is commonly known, involves the action of lncRNA on individual miRNAs,

which directly results in the reduction of its effect on most mRNAs [44]. Recent studies have

shown  that  MIR31HG expression  is  markedly  upregulated  in  pancreatic  ductal

adenocarcinoma  (PDAC).  However,  knock-out  of  this  molecule  resulted  in  inhibition  of

PDAC cell growth, apoptosis, and ultimately reduced invasion. Here, the researchers noted

the  inverse  correlation  of  MIR31HG and  miR-193b in  these  cells.  When  miR-193b was

overexpressed,  MIR31HG levels  decreased  significantly  and  vice  versa.  Such  results

demonstrate the negative regulation of MIR31HG by miR-193b. Closer examination using a



luciferase reporter and RIP assays suggested that miR-193b bound to MIR31HG by blocking

the  binding  sites  of  this  molecule  to  miRNA.  This  activity  of  both  molecules  speaks  to

MIR31HG acting as a sponge binding miR-193b to regulate miRNA targets [87].

Conclusions and future directions

Allis and Jenuwein named RNA “one of the master molecules of epigenetic control”

[1]. Not so long ago, ncRNAs were perceived as genetic noise and ignored in all analyses and

treated as background or experimental errors [5, 88]. The development of new techniques,

such as massive RNA sequencing, bioinformatics and even artificial intelligence (AI), caused

an unbelievable growth in the number of discoveries of different types of ncRNA molecules

[89, 90]. The public release of data from the The Human Cancer Genome (TCGA) project

made it possible to analyze the data in terms of searching for, for example, lncRNA, in 33

different cancers [91, 92]. The TCGA is an immeasurable source of knowledge used as the

first source of data for selection of genes and later validated in in vivo and in vitro models.

Unfortunately, not all studies adopt this model of analysis. The lack of validation based on an

in vivo or in vitro model is questionable as an effect of errors accumulation or assumptions of

mathematical models. On the other hand, results derived only from in vivo or in vitro studies

can be misleading as the consequences of the cell  lines used or the set  of patients.  It  is

essential to apply a holistic approach when a study is designed. The lack of comprehensive

research causes the knowledge about specific types of ncRNAs still not to be fully defined or

validated experimentally. Moreover, many different studies indicated that one lncRNA could

behave differently depending on the cancer type [7]. In some cases only one study defines the

role of lncRNA in a specific biological process or pathway, which should be verified by

independent study. The lack of such an approach is also visible in the case of MIR31HG. The

second important question concerns the potential use of lncRNA as a biomarker. lncRNAs

have all the characteristics of biomarkers, but there are no standardized methods for their

measurement and testing [10]. Another issue to consider is which  transcript variant should be

taken into account. As mentioned earlier, MIR31HG has 32 different transcriptional variants,

with a length between 287 and 10'980 bp [29]. In some cases, not all variants are equal and

they could be expressed in different ways depending on the specific cancer subtype, and have

various diagnostic potencies [34]. Most studies regarding not only lncRNAs, but also other

types  of transcripts,  do not  explicitly point  which transcript  variant  or variants are being

analyzed. Moreover, this information is not included in the TCGA data either. This causes

great difficulties in the adaptation of lncRNAs as biomarkers in clinical practice. However,



many studies indicated that lncRNAs may become important tools to predict the development

and eventual treatment of cancer in the future [10]. Will they be as useful as classic markers?

We assume that the answer to this question will be known within the next decade.
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Figure  1. Two  main  branches  of  epigenetics  elements  involved  in  cell  function  can  be

distinguished and they are based on DNA and RNA level. On the DNA level, three main

changes include:  A. DNA methylation: which involves changes in methylation by adding

methyl groups to the DNA molecule and when appeared in the promoter region; B. histone

modification which is a chemical modification of amino acids that build the histone proteins

causing  changes  in  specific  genes'  regions;  and  C. Chromatin  remodeling:  which  causes

changes  in  chromatin  structure  and  generates  accessible  and  no-accesible  parts'  of  the

genome.  On  the  RNA level  it  is  the  production  of  different  types  of  non-coding  RNA

molecules which are involved in:  D. Regulation of mRNA and ncRNA levels by sponging

mechanism and influencing transcription process; and E. Modification of RNA molecules by
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capping,  polyadenylation,  alternative  splicing,  and  editing.  All  of  these  processes  cause

modifications in gene transcription

Figure 2. MIR31HG functions as a modulator of important biological and cellular processes

including  cell  proliferation,  apoptosis,  cell  cycle  regulation,  EMT  process,  metastasis,

angiogenesis, hypoxia, senescence, and inflammation.



Figure 3. Dysregulation and function of  MIR31HG as  a potential  biomarker  in  different

types  of  cancers.  Red  arrows  indicate  an  increase,  and  blue,  a  decrease  in  the  level  of

MIR31HG expression in a tumor of a given location




