This is a provisional PDF only. Copyedited and fully formatted version will be made available soon.

REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY

ISSN: 1507-1367

e-ISSN: 2083-4640

Host gene and its guest: short story about relation of longnoncoding MIR31HG transcript and microRNA miR-31

Authors: Tomasz Kolenda, Anna Paszkowska, Alicja Braska, Joanna Kozłowska-Masłoń, Kacper Guglas, Paulina Poter, Piotr Wojtczak, Renata Bliźniak, Katarzyna Lamperska, Anna Teresiak

DOI: 10.5603/RPOR.a2023.0006

Article type: Review paper

Published online: 2023-02-01

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31

10.5603/RPOR.a2023.0006

Tomasz Kolenda¹, Anna Paszkowska^{1–3}, Alicja Braska², Joanna Kozłowska-Masłoń^{1–3}, Kacper Guglas⁴, Paulina Poter⁵, Piotr Wojtczak⁶, Renata Bliźniak¹, Katarzyna Lamperska^{1, 2}, Anna Teresiak^{1, 2}

 ¹Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
 ²Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
 ³Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
 ⁴1st Surgical Oncology and General Surgery Department, Greater Poland Cancer Centre, Poznan, Poland
 ⁵Department of Oncologic Pathology and Prophylaxis, Greater Poland Cancer Centre, Poznan, Poland
 ⁶Doctoral Studies, Medical University of Lodz, Lodz, Poland

Correspondence to: Tomasz Kolenda, 1Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61–866 Poznan, Poland; e-mail: kolenda.tomek@gmail.com

Abstract

Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life.

One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases,

the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done.

In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology.

Key words: microRNA; epigenetic; cancer biomarker

Long non-coding RNAs are important players in cellular function

The word epigenetics for most is the synonym for changes in the chromatin structure and DNA. However, it has changed in the last decades, and new elements of cellular control in response to physiological or pathological signals have transformed our knowledge considering epigenetics. Now, in the "modern era of epigenetic research", we look not only at the chromatin and DNA state but also, which seems more fascinating, the action of various molecular regulators, such as non-coding RNA (ncRNA) [1] (Fig. 1). ncRNAs consist of constitutive RNAs: tRNA, rRNA, snRNA, snoRNA, and a group of regulatory RNAs: siRNA, piRNA, miRNA, NAT, circRNA, and lncRNA [2–4]. Though long non-coding RNAs (lncRNAs) are not translated into proteins, they become over time valuable and significant molecules. The lncRNAs consist of over 200 nucleotides and their activity enables them not only to interact with proteins and other RNAs but also to regulate gene transcription and expression through changes in the structure of chromatin [5, 6]. Specified types of lncRNAs play a role in signaling, decoying, guiding, and building scaffolds for proteins and other RNA molecules [7].

Fragments encoding lncRNAs can occupy intergenic or intragenic positions. Specific intragenic genes can be located in intron, enhancer, promoter, or 3'UTR flanking regions [5, 6]. Here, it is important to mention that the lncRNAs of interest are closely related to genes that are encoded in the vicinity of the paired mRNA, resulting in their interaction with each other. lncRNAs appear to play an important role in the regulation of gene transcription in the nucleus or subsequent post-transcriptional modifications in the cytoplasm. Despite the opportunities afforded by lncRNA research, many difficulties are still encountered in fully understanding them due to their location in the genome. It should be noted that more than 50% of lncRNAs are long intergenic non-coding RNAs (lincRNAs) with no annotated proteins but some short peptides can also be found [8]. The direction of transcription and the

distance at which the transcript responsible for encoding protein is located from the lncRNA lead to the division of this group of RNAs into four classes: i) located on the same strand, ii) convergent, iii) divergent, and iv) isolated, which are located at least 50 kb from the closest protein-coding gene [15]. The main challenges in understanding the mechanisms of lncRNAs behavior are caused by different expression levels depending on tissue localization [10], frequent heterogeneity of isoforms, and numerous repeats in transcriptional initiation regions [11]. Moreover, as lncRNAs have been shown to vary with different expression levels, the specificity of their function in different cell types changes [12]. As it emerged, dysfunction of the activity or cellular mechanisms of lncRNAs may appear through pathological states including tumor progression through influence not only on the chromatin structure but also on several transcription factors [13]. According to GENCODE, NCBI Refseq, LNCipedia, and NONCODE number of lncRNAs' genes is estimated between 56'946 to 17'952 locus which gives 27'381 to 172'216 transcripts [14–17]. It is proven that aberration of both coding and non-coding RNAs play a crucial role in cancer biology [18]. lncRNAs regulate cell growth, cell cycle, cell phenotype, migration and invasion ability, and apoptosis [7]. The functions and activity of lncRNAs are still being investigated. More and more new elements are added, such as the possibility of interaction of lncRNAs with RNAi molecules, for example UCA1, CASC2, GAS5, FER1L4, WDFY3-AS2, TP53TG1, FENDRR or SNHG1 lncRNAs with *miR-18a* [19]. What is more interesting, lncRNAs, such as *MIR31HG*, can be host genes for miRNAs and play a dual role as lncRNA and as a primary-miRNA transcript.

MIR31HG is a member of long non-coding microRNA-host-genes

MIR31 host gene (*MIR31HG*) belongs to a group of long non-coding microRNA-hostgenes (lnc-MIRHGs) distinguished from lncRNAs due to coding the microRNA gene and transcript. *MIR31HG* functions in two specified RNA forms, as a long transcript, lncRNA, and as a host gene, which under processing is changed into a short non-coding RNA molecule, microRNA named *miR-31*. Dhir et al. estimated the distribution of miRNA between lncRNA and protein-coding genes and it is 82.5% and 17.5%, respectively. These lncRNAs can be divided into lincRNA (57.1%), pseudogene (13.2%), antisense (16.0%), and other (19.0%) types of transcripts. Moreover, these lncRNAs are the source of about 17.5% of miRNAs in humans [20].

It should be noted that lnc-MIRHGs are an under-studied class of lncRNAs in contrast to the well-known microRNAs which are hosted by them [21].

It is worth mentioning that miRNAs are transcribed as pri-miRNAs whose structure includes a terminal loop, stem, and 50 and 30 single-stranded overhangs at the ends. According to miRbase and GENCODE, there are 1'917 human miRNA genes, 1'917 hairpin precursors, and 2'654 mature sequences, and 1'881 miRNA genes [22]. Pri-miRNA does not perform the gene silencing function, so it is post-transcribed through canonical or noncanonical miRNA biogenesis pathways [23]. miRNAs, concerning their relationship with MIRHGs, can be categorized into: i) intronic, ii) exonic, ii) exon-intron junction (SOmiRNAs), and iv) intergenic miRNAs. These localizations in the gene and genome influence their biogenesis [21]. There are two main proposed biogenesis models of MIRHG and its intragenic miRNA: i) synergetic model which includes mirtron processing, cooperative of the splicing machinery and microprocessor, and a splicing-independent manner of miRNA production with the presence of splicing factors, and the second model, ii) competition model where miRNA production is alternative- and non-alternative-splicing-mediated. A detailed description of these two models is presented by Sun et al. [21]. It was shown that there is a correlation in expression between the miRNA and the corresponding MIRHG. Moreover, miRNA molecules, which are usually located within 50 kb, are derived from a single transcript. When miRNAs originate from an intron region, their expression is often correlated with MIRHG expression [26]. It should be noted that the expression of MIRHG can be regulated by tumor cells, more specifically by the promoters. The changes in methylation of the above promoters result in an altered expression of the encoded miRNA [27]. Moreover, in the case of intragenic miRNAs and their host, a negative feedback loop can be created which regulates the level of both transcripts [21]. It is worth noting that the expression of miRNA and MIRHG pairs is not always related in this way, but in some cases, it offers great diagnostic possibilities [27].

The function of MIRHGs as lncRNA transcripts alone is dicussive and some evidence indicates that they function as primary transcripts of miRNAs. On the other hand, some authors show the miRNA-independent role of lnc-MIRHGs such as *MIR22HG*, *MIR100HG*, *MIR205HG/LEADeR*, *RMST*, *CYTOR*, *LINC01138*, *LINC-PINT*, *MIR503HG*, *NEAT1*, *PVT1*, *H19* or *MIR222HG*, which are fully described by Sun et al. [25]. MIRHGs can be categorized as oncogenes or tumor suppressors, but this function can be specific to the type of cancer. MIRHGs can: i) act as ceRNA elements, ii) interact with DNA elements, or iii) with proteins as well as vi) regulate the interaction with proteins [25]. All these capabilities and functions make them an astonishing group of RNA molecules. Therefore, in this review we will continue to focus on one of them, *MIR31HG*, presenting the current state of knowledge.

MIR31HG — localization in the genome and biogenesis

The *MIR31HG* molecule has been known in the past by names: *LOC554202*, *hsa-lnc-31*, or *lncHIFCAR*. It is localized on chromosome 9 and consists of 4 exons. The length of the whole *MIR31HG* is about 150–106 Kb [28, 29]. According to GeneCards The Human Gene Database, the latest assembly of genomic locations shows that *MIR31HG* Gene is situated on the minus strand orientation on chr9:21'380'073-21'591'766 (GRCh38/hg38) and its size is estimated as 211'694 bases [29]. Based on GeneHancer (GH) data, 3 different enhancers and 2 different promoter/enhancer regions were distinguished for the *miR31HG* gene, which creates regulatory elements and has the transcription factor binding sites such as: different TRIM, ZNF, MYC, STAT3, ZEB2, NANOG or EZH2 proteins [29].

MIR31HG is over 200 nucleotides long and it is transcribed by RNA polymerase II and the mature transcript is polyadenylated. Augoff et al. showed that the *MIR31HG* (*LOC554202*) transcript is 2'246 bp long and it does not encode any protein products [27]. Moreover, the *MIR31HG* gene does not encode any short peptides which could be produced by this type of transcript [29]. These features cause *MIR31HG* to be indisputably classified as a long non-coding RNA (lncRNA). However, *MIR31HG* belongs to the unique subtype of lncRNAs because, in the first intron of *MIR31HG*, it harbors a sequence of other type of ncRNA molecule which is classified as a short-noncoding RNA, named *miR-31*. It should be noted that this first intron contains a CpG island, which is responsible for the transcription regulation of both types of ncRNA molecules [27]. What is interesting, the *MIR31HG* transcript is not post-translationally modified and 32 different transcriptional variants are distinguished with a length between 287 and 10'980 bp. It should be noted that no orthologs or paralogs for *MIR31HG* have been identified up to date [29].

The expression level of *MIR31HG* is tissue-specific and according to the GENE NCBI, the highest expression is observed in normal tissue taken from the urinary bladder and the lowest in the pancreas, liver, and heart [28].

The biological function of MIR31HG

It is known that *MIR31HG* plays an important role in cellular processes whose disturbance causes cancerogenesis or increases the rate of this process. The most described, where *MIR31HG* is involved, are cell proliferation, cell cycle, invasiveness, EMT process as well as apoptosis. However, *MIR31HG* has also been described in the context of angiogenesis, hypoxia, senescence, or inflammation (Fig. 2).

Cell proliferation and cell cycle

One of the most characteristic biological functions linked with *MIR31HG* is its influence on cellular proliferation. Nie et al. were the first to observe that upregulation of *MIR31HG* caused lower cell proliferation of gastric cancer cells *in vitro* and *in vivo* and its knockdown caused a reversed effect partly by regulating *E2F1* and *p21* [30]. Similarly, in HNSCC (head and neck squamous cell carcinoma) cells the knockdown of *MIR31HG* affects proliferation, cell cycle arrest in G1 or S phase, and apoptosis. This effect was caused by decreasing expression of *HIF1A* and *CCND1*, and increasing *p21* on mRNA and protein levels [31]. However, the opposite effect was observed in the case of breast cancer, where silencing of *MIR31HG* expression inhibits the proliferative ability of the cells, and its function is linked with the *POLDIP2* expression level [32]. Similarly, in lung squamous cell carcinoma (LSCC), inhibition of *MIR31HG* causes reduced cell proliferation, but the molecular way was not clearly explained [33]. Another study showed that *MIR31HG* knockdown inhibits not only cancer cell migration but also colony formation and cell proliferation [34].

In addition to the tumors' model, also in the case of human periodontal ligament stem cells, the influence of of *MIR31HG* on proliferation was found. Methylation of the *MIR31HG* promoter induced by mechanical force causes reduced expression of *MIR31HG* and upregulation of *IL-6*, *DNMT1*, and *DNMT3B*. The changes in the stem cells' proliferation can be overcome by *DNMT1* and *DNMT3B* knockdown, which interact with the upstream region of the *MIR31HG* promoter and induce its expression [35].

Invasiveness and EMT process

The migration and invasive ability are also linked with *MIR31HG*. It caused higher invasiveness of breast cancer cells [32] as well as of lung cancer cells [33]. It was observed that in the case of non-small-cell lung carcinoma (NSCLC), reduction of *MIR31HG* expression was associated with the EMT process and manifested by reduction of Twist1 and Vimentin expression and upregulation of E-cadherin. Authors stated that *MIR31HG* causes changes in the Wnt/ β -catenin signaling pathway by reduction of *GSK3\beta* and β -catenin and also its knockdown was linked with phosphorylation of *GSK3\beta* [33]. It should be noted that *MIR31HG*, depending on the cellular state, does not induce cancer cell invasion but promotes paracrine senescence [36]. The role of *MIR31HG* in the EMT process was also observed in osteosarcoma, where upregulation of *MIR31HG* caused down-regulation of *miR-361*. This effect was manifested by upregulation in the protein levels of *miR-361*'s target genes, vascular endothelial growth factor (VEGF), forkhead box M1 (FOXM1), and Twist in in vitro model and patients samples, as well as by downregulation of E-cadherin observed in cell lines after upregulation of *MIR31HG* [37].

Apoptosis

Feng et al. based on nasopharyngeal carcinoma indicated that the knockdown of *MIR31HG* causes inhibition of apoptosis by negative regulation of the *PI3K/AKT* signaling pathway [38]. Moreover, based on U2OS and Saos-2 cell lines it was indicated that apoptosis could be regulated by the expression level of miR-361 and its targets, VEGF, FOXM1, and Twist, as well as by changes in anti-apoptosis of B-cell lymphoma 2 (BCL2) and cyclin D (CCND1) proteins levels whose expression was inhibited by artificial up-regulation of *MIR31HG* [37].

Inflammation

Gao et al.'s studies identified the elevation of *MIR31HG* in psoriatic skin. The expression of two types of keratin, *KRT6* and *KTR16*, was significantly up-regulated in keratinocytes from patients with psoriasis in comparison to normal samples, and *MIR31HG*-dependent. As mentioned before, also the cell cycle was changed after *MIR31HG* silencing in keratinocytes and it was shown that there were more keratinocytes in the G2/M phase relative to cells in the S phase, indicating that *MIR31HG* knockdown inhibits the proliferation of HaCaT keratinocytes. Moreover, it was indicated that stimulation of proinflammatory interleukin 17A (IL-17A), interleukin 22 (IL-22), tumor necrosis factor alpha (TNF- α), and interleukin 1 alpha (IL-1 α) cytokines was able to elevate *MIR31HG* expression. It should be noted that *BAY*, *NF*- κ B inhibitor, and *p65* regulations additionally showed that *NF*- κ B activation has an impact on *MIR31HG* [39].

Senescence

Senescence can also be induced in the presence of oncogenes as a response aimed at tumor suppression, such a mechanism is called oncogene-induced senescence. A group of researchers has shown that *MIR31HG* is also involved in this induction [40]. Montes et al. based on cell models, showed that *MIR31HG* plays a dual role depending on the localization in cytoplasm and nucleus. *MIR31HG* is overexpressed and translocates to the cytoplasm during BRAF-induced senescence and by kinase RSK causes phosphorylation of YBX1.Finally, it changes the senescence-associated secretory phenotype (SASP) of cells by *IL1A* translation activation [41].

MIR31HG can be used as a biomarker

The potential role of *MIR31HG* as a biomarker was analyzed on both the Cancer Genome Atlas (TCGA) data and collected samples by specified research groups or cell lines. However, independent research about the same cancer type was done in only a few cases [33, 34, 42–53]. A growing number of studies indicate that *MIR31HG* plays an important role in cancer as an oncogene or as a suppressor. It was shown that *MIR31HG* is down-regulated in gastric cancer [30], bladder cancer [34, 42], hepatocellular carcinoma [57], pancreatic ductal adenocarcinoma [58], and glioblastoma [65]. Moreover, up-regulation of *MIR31HG* was indicated in the case of breast cancer [32], head and neck cancer cancers [31, 67, 68], melanoma [54], cervical carcinoma [56], osteosarcoma [57], non-small cell lung cancer [33, 43, 44], lung adenocarcinoma [44–47], colorectal cancer [48–51], thyroid cancer [52, 53], as well as papillary thyroid cancer [64]. It should be noted that two independent studies checking the role of *MIR31HG* in esophageal squamous cell carcinoma indicated opposite expression levels of this lncRNA [59, 60].

MIR31HG can be used as a diagnostic biomarker and it is detectable in tissue as well as in biological fluids such as plasma [31, 60]. Moreover, *MIR31HG* could describe the more invasive types of cancer, with advanced tumor–nodules–metastases (TNM) stages, lymph node invasion as well as distant metastasis [31, 32, 43, 54, 57, 59, 60, 62] and its higher expression is associated with worse disease-free and overall survival (OS). However, the opposite meaning of *MIR31HG* as a prognostic biomarker is observed in the case of bladder cancer [42], hepatocellular carcinoma [57], esophageal squamous cell carcinoma [59], and gastric cancer [30]. For these cancers, a higher expression level of *MIR31HG* is negatively correlated with more advanced TNM-stage [30, 42, 57], with lower tumor nodule number, vascular invasion [57], metastasis [57, 59] or poor tumor differentiation [59]. Analysis of patients' survival revealed that the higher expression levels of *MIR31HG* were associated with longer survival for these types of cancers [30, 57, 59].

In the end, it should be noted that Chang et al. indicated potential features of *MIR31HG* as a predictive biomarker, and higher levels of *MIR31HG* were associated with increased cisplatin resistance [55], but there is only one study exploring this problem. All studies and results describing *MIR31HG* as a biomarker are included in Table 1.

Table 1. MIR31 host gene (MIR31HG) as a potential biomarker in different types of cancers

Туре	Metho		Туре		
of	ds of		of		
cance	detecti	Sample	biom		
r	on	type	arker	Description	Ref.

		60 paired		
		normal and	Overexpressed in cancer tissue and plasma of the	
		adjacent	early and advanced stages of patients	
		cancer	Correlated with advanced T-stages and lymph	
Head		samples;	node invasion	
and		plasma; diagi	Lower level was associated with better OS and	
neck		FaDu and ostic	RFS	
cance	qRT-	Cal-27 cell prog	MIR31HG regulated cell cycle progression and	
r	PCR	lines ostic	apoptosis by targeted <i>HIF1A</i> and <i>p21</i>	[31]
		55 patients'	Overexpressed in cancer tissue and cell lines	
		tissues and	Associated with lymph nodes invasion	
		Human diagi	Distal metastasis and higher TNM-stages	
Mela		Epidermal ostic	Lower MIR31HG expression was characteristic	
nom	qRT-	Melanocytes prog	with lower malignancy by decreased cell	
a	PCR	(cell line) ostic	proliferation, and migration and invasion rates	[54]
		50 paired		
		normal and		
		adjacent		
		cancer		
		samples and		
		T47D, BT-	Overexpressed in cancer tissue and cell lines	
		474,	Correlated with the patient's tumor diameter	
		SUM149-	Correlated with tumor TNM-stages and lymph	
Brea		Luc, BT549, diagi	node metastasis	
st		and MCF- ostic	Lower level associated with better survival	
cance	qRT-	10A cell prog	MIR31HG influenced on proliferation, migration	
r	PCR	lines ostic	and invasion abilities by regulation of <i>POLDIP2</i>	[32]
Oral	TCGA	520 cancer diag	Overexpressed in cancer tissue and cell lines	[55]
squa	(RNAs	and 44 ostic	MIR31HG enhanced oncogenic phenotype	
mous	eq);	normal prog	especially by enrichment of <i>Wnt</i> pathway	
cell	qRT-	TCGA ostic	Lower level associated with better survival	
carci	PCR	samples; and	Correlated with higher proliferation and wound	
nom		Cytobrushed predi	healing closure rates	
a		samples and ctive	Higher <i>MIR31HG</i> associated with increased	

		matched			
		mucosa			
		from 28			
		nationts and			
		OC3 OC4			
		OC5 SAS			
		OECM1			
		UECMI,			
		FaDu, and			
		NOK cell			
		lines		cisplatin resistance	
		24 normal			
		and 104			
		lesions/canc			
		er samples			
		from GEO			
		and 306			
		cancer and			
		13 normal			
		TCGA data			
		sets; 46			
		pairs of			
		cervical			
		cancer			
		tissues and			
		adjacent			
		patients'			
		tissues and		Overexpressed in cancer tissue and cell lines,	
Cervi	TCGA	CasKi,		Knockdown of <i>MIR31HG</i> suppressed cell growth	
cal	(RNAs	SiHa, C33A	diagn	and invasion	
carci	eq);	and	ostic.	MIR31HG regulated miR-361-3p and through it	
nom	gRT-	HcerEpic	progn	modulated epithelial membrane protein 1 (<i>EMP1</i>)	
a	PCR	cell lines	ostic	mRNA expression level	[56]

			Overexpressed in cancer tissue and cell lines	
			Higher MIR31HG expression associated with	
			higher tumor stages and distant metastasis	
			miR-361 was sponged by MIR31HG and down-	
			regulated	
			Knockdown of MIR31HG restored the expression	
		40 paired	of <i>miR-361</i> in cell lines	
		normal and	miR-361 induced cell apoptosis and G1/S arrest,	
		adjacent	inhibited proliferation and migration in Saos-2 and	
		cancer	U2OS cells, and <i>MIR31HG</i> had reversed effect	
		samples	MIR31HG by regulation of miR-361 targeted	
		patients'	VEGF, FOXM1 and Twist, and caused	
		tissues and	upregulation of BCL2, CCND1 and EMT	
		143B,	phenotype	
		MG63,	Higher level of VEGF, FOXM1 and Twist were	
		U2OS,	positively correlated with MIR31HG in patients'	
Oste		Saos-2 and	samples	
osarc	qRT-	hFOB1.19 diag	n <i>MIR31HG</i> promoted tumor growth by regulation	
oma	PCR	cell lines ostic	of <i>miR-361</i> and <i>VEGF</i> , <i>FOXM1</i> and <i>Twist in vivo</i>	[57]
		102 FFPET		
		patients'	Decreased in cancer tissue and cell lines and	
		samples and	depended on the spliced variants ($MIR31HG\Delta E1$	
		370 TCGA	and $MIR31HG\Delta E3$)	
		patients, and	$MIR31HG\Delta E3$ highly expressed in the case of the	
		SCaBER,	basal subtype	
	TCGA	UMUC3,	Higher expression of $MIR31HG\Delta E1$ and	
Blad	(RNAs	T24, RT112, diag	m $MIR31HG\Delta E3$ associated with worse OS and DFS	
der	eq);	RT4 and ostic	, Knockdown of <i>MIR31HG</i> inhibited cell	
cance	qRT-	UROtsa cell prog	n proliferation, colony formation, and migration	
r	PCR	lines ostic	abilities	[34]

				Strongly correlated with <i>miR-31-5p</i>	
				MIR31HG changed in 12% of patients and	
				associated with depletion of CMS2-canonical	
				subgroup and shorter RFS	
				5-year RFS for patients (stage II subgroup) with	
				MIR31HG outlier status lower than those with	
				normal-like expression	
				MIR31HG outlier status associated with worse	
				outcome in clinical high risk groups (CMS4-	
		nearly 2000		mesenchymal gene expression subtype)	
	GEO	CRC		Patients with MIR31HG outlier expression had	
	and	biopsies and		reduced expression of MYC targets, higher	
	TCGA	preclinical		expression of epithelial-mesenchymal transition,	
Colo	(Arrays	models;		<i>TNF-α/NFκB</i> , <i>TGF-β</i> , and <i>IFN-α/γ</i> gene	
recta	/RNAse	patient-	diagn	expression signatures	
1	q);	derived	ostic,	Prognostic value of MIR31HG outlier status was	
cance	qRT-	xenografts;	progn	independent of cytotoxic T lymphocyte and	
r	PCR	cell lines	ostic	fibroblast infiltration	[49]
				Overexpressed in tumor tissues compared with	
				adjacent normal tissues	
				Higher MIR31HG expression associated with	
		88 paired		histological differentiation grade, lymph node	
		normal and		metastasis and higher TNM-stages	
		adjacent		Higher MIR31HG expression associated with	
		cancer		worse OS	
		samples		MIR31HG knockdown inhibited proliferation and	
		patients'		invasion abilities	
Non-		tissues and		Lower expression suppressed the EMT phenotype	
small		A549,		(reduced Twist1 and Vimentin, and increased E-	
cell		H1299,	diagn	cadherin expressions)	
lung		NCIH460	ostic,	Inhibition of the <i>Wnt/β-catenin</i> signaling pathway	
cance	qRT-	and 16HBE	progn	(reduced expression of <i>GSK3</i> β and β - <i>catenin</i> , and	
r	PCR	cell lines	ostic	increased phosphorylation of (p)-GSK3β)	[33]

		132 patients'			
		tissues and		Overexpressed in cancer tissues and cell lines	
		20 adjacent		Associated with higher TNM-stages and	
		non-		differentiated degree	
		cancerous		Higher <i>MIR31HG</i> was an independent unfavorable	
		samples, and		OS factor	
		A549,		Knockdown MIR31HG caused inhibition of cells	
Lung		H2228,		proliferation and blocked cell-cycle and didn't	
aden		H1975, dia	agn	changed cell apoptosis	
ocarc		H1299 and os	stic,	No correlation between MIR31HG and miR-31	
inom	qRT-	BEAS-2B pr	rogn	expressions and knockdown of MIR31HG had no	
a	PCR	cell lines os	stic	effect on the <i>miR-31</i> level	[45]
		50 paired		Overexpressed in tumor tissues and cell lines	
		normal and		SP1, transcription factor, binds to promoter region	
		adjacent		of <i>MIR31HG</i> and induces its expression	
		cancer		Higher MIR31HG was an independent predictor	
		patients'		worse OS	
		tissues and		MIR31HG associated with less differentiation	
Non-		H1299,		degree and higher TNM-stages	
small		A549,		Knockdown of MIR31HG inhibited migration,	
cell		H1975, dia	agn	invasion and metastasis abilities,	
lung		H460 and os	stic,	Overexpression of <i>MIR31HG</i> reduced the	
cance	qRT-	BEAS-2B pr	ogn	expression of <i>miR-214</i> and induced cancer	
r	PCR	cell lines os	stic	progression	[43]
Colo	qRT-	30 paired dia	agn	Overexpressed in tumor tissues and cell lines	[50]
recta	PCR	normal and os	stic,	Associated with worse prognosis	
1		adjacent pr	ogn	Overexpression of <i>MIR31HG</i> induced	
cance		cancer os	stic	proliferation, growth, invasion, glycolysis and	
r		patients'		lung metastasis and angiogenesis observed in vitro	
		tissues and		and <i>in vivo</i>	
		RKO,		MIR3HG upregulated higher expression of YY1	
		SW480,		(mRNA and protein)	
		SW620,		Forced overexpression of <i>YY1</i> induced	

		LoVo and		overexpression of enhanced MIR31HG	
		HCT116 cell		MIR31HG inhibits miR-361-3p which has and	
		lines		anti-tumor effect by targeting <i>YY1</i>	
		55 paired			
		normal and			
		adjacent			
		cancer			
		patients'			
		tissues and			
		T24, 5637,			
Blad		UM-UC-3,			
der		SW780 and			
cance	qRT-	SV-HUC-1	diagn	Downregulated in tumor tissues and cell lines	
r	PCR	cell lines o	ostic	MIR31HG negatively associated with TNM-stages	[42]
		29 paired			
		normal and			
		adjacent			
		cancer			
		patients'		Overexpressed in tumor tissues and cell lines	
		tissues and		Higher <i>MIR30HG</i> associated with worse prognosis	
		SW579,		Knockdown of MIR30HG reduced proliferation,	
Thyr		TPC-1, d	diagn	invasion, migration, promoted cell apoptosis in	
oid		HTH83 and o	ostic,	vitro and tumor growth in vivo	
cance	qRT-	Nthy-ori 3– J	progn	MIR30HG regulated the expression of miR-761	
r	PCR	1 cell lines	ostic	which in turn regulates <i>MAPK1</i>	[52]
Нера	qRT-	42 paired	diagn	Downregulated in tumor tissues and cell lines	[57]
tocell	PCR	normal and o	ostic,	Higher expression associated with better OS	
ular		adjacent J	progn	Higher expression correlated with lower tumor	
carci		cancer o	ostic	nodule number, lower vascular invasion and lower	
nom		patients'		TNM-stages	
a		tissues and		Overexpression of <i>MIR31HG</i> reduced	
		SMMC7721		proliferation and metastasis in vitro and in vivo	
		, HepG2,		MIR31HG regulates miR-575 expression, which	

		Huh7, SK-		has oncogenic properties, and influences on its	
		hep1 and		target — <i>ST7L</i>	
		293 Т		There was a reciprocal inhibition between	
		(HEK) cell		MIR31HG and miR-575 in the same RISC	
		lines		complex	
		GEO 45			
		paired			
		normal and			
		adjacent			
		cancer			
		patients'			
		tissues and			
		AsPC-1,			
Panc		PANC-1,		Overexpressed in tumor tissues and cell lines	
reati		CFPAC-1,		Knockdown of MIR31HG reduced cell growth,	
С		Hs 766 T,		induced apoptosis and G1/S arrest, and inhibited	
duct		SW 1990,		invasion in vitro as well as tumor growth in vivo	
al		MIA PaCa-		miR-193b targets MIR31HG and they have inverse	
aden	GEO	2, BxPC-3		correlation	
ocarc	(Array)	and hTERT-		MIR31HG may act as an endogenous "sponge" by	
inom	; qRT-	HPNE cell	diagn	regulation of <i>miR-193b</i> and its' targets (<i>CCND1</i> ,	
a	PCR	lines	ostic	<i>Mcl-1</i> , <i>NT5E</i> , <i>KRAS</i> , <i>uP</i> A, and <i>ETS1</i>)	[58]
Esop					
hage					
al				Downregulated in tumor tissues and cell lines	
squa		185 paired		Lower expression <i>MIR31HG</i> associated with poor	
mous		normal and		differentiation, advanced lymph node metastasis	
cell		adjacent	diagn	positive distant metastasis and higher TNM-stages,	
carci		cancer	ostic,	Higher expression of <i>MIR31HG</i> associated with	
nom	qRT-	patients'	progn	better OS and it is an independent prognostic	
a	PCR	tissues	ostic	marker for survival	[59]

		53 paired			
		normal and			
		adjacent			
		cancer		Overexpressed in tumor tissues, plasma and cell	
		patients'		lines	
		tissues, 53		Expression level of <i>MIR31HG</i> in tissue and	
		plasma		plasma from the same patient was positively	
		samples		correlated	
Esop		from		Higher expression observed in tissue and plasma	
hage		patients and		samples of patients with higher TNM-stages and	
al		39 from		positive lymph node metastases	
squa		healthy		MIR31HG displayed high diagnostic sensitivity	
mous		donors, and		and specificity for predicting cancer occurrence	
cell		EC9706, d	liagn	Knockdown of MIR31HG reduced proliferation,	
carci		EC1 and o	ostic,	migration, and invasion abilities	
nom	qRT-	Het-1A cell p	orogn	Reduction of MIR31HG caused inhibition of	
a	PCR	lines o	ostic	Furin and MMP1	[60]
		42 paired			
		normal and			
		adjacent		Downregulated in tumor tissues and cell lines	
		cancer		Associated with larger tumor size and advanced	
		patients'		pathological stages	
		tissues and		Lower <i>MIR31HG</i> expression associated with	
		SGC7901,		worse PFS and OS	
		BGC823,		Overexpression of <i>MIR31HG</i> inhibited cell	
Gast		MGC803, d	liagn	proliferation in vitro and tumor growth in vivo	
ric		MKN45 and o	ostic,	Knockdown of <i>MIR31HG</i> promoted cell	
cance	qRT-	GES-1cell p	orogn	proliferation partly via regulation of $E2F1$ and $p21$	
r	PCR	lines o	ostic	expressions	[30]
Oral	GEO	GEO 22 d	liagn	Overexpressed in tumor tissues	[61]
squa	(array)	normal and o	ostic,	Higher level of <i>MIR31HG</i> associated with worse	
mous	qRT-	57 cancer p	orogn	OS and RFS (independent prognostic predictor)	
cell	PCR	patients' o	ostic	Overexpression of MIR31HG induced pseudo-	

		tissues,	15			
		paired			hypoxic phenotype	
		normal	and		Knockdown of MIR31HG reduced hypoxia-	
		adjacent	:		induced HIF-1 α transactivation, sphere-forming	
		cancer			ability, metabolic shift and metastatic potential in	
		patients			vitro and in vivo	
carci		tissues	and		MIR31HG directly bound and facilitated the	
nom		SAS	cell		recruitment of HIF -1 α and $p300$ cofactor to the	
a		line			target promoters	
		352 T	CGA		MIR31HG and other lncRNAs (ACTA2-AS1,	
		patients			CARD8-AS1, HCP5, HHIP-AS1, HOTAIRM1,	
		cancer			ITGB2-AS1, LINC00324, LINC00605,	
		tissues,	and		LINC01503, LINC01547, MIR155HG, OTUD6B-	
	TCGA	TOV-21	G,		AS1, PSMG3-AS1, SH3PXD2A-AS1, and ZBED5-	
Ovar	(RNAs	A2780,		diagn	AS1) associated with OS	
ian	eq),	SKOV3	, and	ostic,	Those lncRNAs correlated with patient age at	
cance	qRT-	IOSE80	cell	progn	initial pathologic diagnosis, lymphatic invasion,	
r	PCR	lines		ostic	tissues source site, and vascular invasion	[62]
r	PCR	lines		ostic	tissues source site, and vascular invasion MIR31HG as well as WASIR2, miR-200a and miR-	[62]
r	PCR	lines		ostic	tissues source site, and vascular invasion MIR31HG as well as WASIR2, miR-200a and miR- 155 overexpressed in cancer tissue	[62]
r	PCR	lines		ostic	tissues source site, and vascular invasion MIR31HG as well as WASIR2, miR-200a and miR- 155 overexpressed in cancer tissue Lower MIR31HG expression associated with	[62]
r	PCR	lines		ostic	tissues source site, and vascular invasion MIR31HG as well as WASIR2, miR-200a and miR- 155 overexpressed in cancer tissue Lower MIR31HG expression associated with better OS	[62]
r	PCR	lines		ostic	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 lncRNA-miRNA signature can be used as	[62]
r	PCR	lines		ostic	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 lncRNA-miRNA signature can be used as independent prognostic value of OS for stage II	[62]
r Colo	PCR	lines 166 T	CGA	ostic	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 lncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity	[62]
r Colo n	PCR	lines 166 Tu stage	CGA II	ostic diagn ostic,	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 lncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated	[62]
r Colo n Canc	PCR TCGA (RNAs	lines 166 Tu stage colon ca	CGA II ancer	ostic diagn ostic, progn	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 IncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling	[62]
r Colo n Canc er	PCR TCGA (RNAs eq)	lines 166 To stage colon ca patients	CGA II ancer	ostic diagn ostic, progn ostic	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 IncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling in lymphatic endothelium pathways	[62]
r Colo n Canc er Colo	PCR TCGA (RNAs eq) TCGA	lines 166 To stage colon ca patients TCGA	CGA II ancer 593	ostic diagn ostic, progn ostic diagn	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 IncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling in lymphatic endothelium pathways <i>MIR31HG</i> as well as <i>LINC00461</i> , <i>LINC01055</i> ,	[62] [63] [51]
r Colo n Canc er Colo recta	PCR TCGA (RNAs eq) TCGA (RNAs	lines 166 Tu stage colon ca patients TCGA tumor	CGA II ancer 593 and	ostic diagn ostic, progn ostic diagn ostic,	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 IncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling in lymphatic endothelium pathways <i>MIR31HG</i> as well as <i>LINC00461</i> , <i>LINC01055</i> , <i>ELFN1-AS1</i> , <i>LMO7-AS1</i> , <i>CYP4A22-AS1</i> ,	[62] [63] [51]
r Colo n Canc er Colo recta l	PCR TCGA (RNAs eq) TCGA (RNAs eq),	lines 166 Tu stage colon ca patients TCGA tumor 51 p	CGA II ancer 593 and aired	ostic diagn ostic, progn ostic diagn ostic, progn	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 IncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling in lymphatic endothelium pathways <i>MIR31HG</i> as well as <i>LINC00461</i> , <i>LINC01055</i> , <i>ELFN1-AS1</i> , <i>LMO7-AS1</i> , <i>CYP4A22-AS1</i> , <i>AC079612.1</i> , <i>LINC01351</i> associated with OS	[62] [63] [51]
r Colo n Canc er Colo recta l Canc	PCR TCGA (RNAs eq) TCGA (RNAs eq), qRT-	lines 166 Tu stage colon ca patients TCGA tumor 51 p normal	CGA II ancer 593 and aired and	ostic diagn ostic, progn ostic diagn ostic, progn ostic	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 lncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling in lymphatic endothelium pathways <i>MIR31HG</i> as well as <i>LINC00461</i> , <i>LINC01055</i> , <i>ELFN1-AS1</i> , <i>LMO7-AS1</i> , <i>CYP4A22-AS1</i> , <i>AC079612.1</i> , <i>LINC01351</i> associated with OS Risk factors for the prognosis with high sensitivity	[62] [63] [51]
r Colo n Canc er Colo recta l Canc er	PCR TCGA (RNAs eq) TCGA (RNAs eq), qRT- PCR	lines 166 Tu stage colon ca patients TCGA tumor 51 p normal adjacent	CGA II ancer 593 and aired and	ostic diagn ostic, progn ostic diagn ostic, progn ostic	tissues source site, and vascular invasion <i>MIR31HG</i> as well as <i>WASIR2</i> , <i>miR-200a</i> and <i>miR- 155</i> overexpressed in cancer tissue Lower <i>MIR31HG</i> expression associated with better OS 4 lncRNA-miRNA signature can be used as independent prognostic value of OS for stage II colon cancer with high sensitivity and specificity Correlated genes with <i>MIR31HG</i> were associated with the EMT process and the <i>VEGFR3</i> signaling in lymphatic endothelium pathways <i>MIR31HG</i> as well as <i>LINC00461</i> , <i>LINC01055</i> , <i>ELFN1-AS1</i> , <i>LMO7-AS1</i> , <i>CYP4A22-AS1</i> , <i>AC079612.1</i> , <i>LINC01351</i> associated with OS Risk factors for the prognosis with high sensitivity and specificity	[62] [63] [51]

					were accurate in the prognosis monitoring	
					IRLs index were correlated with a tumor status	
		patients'			and N-stage and immune cell infiltration of CD4+	
		tissues			T cells and dendritic cells	
		GEO	136		Five upregulated (ENTPD1, THRSP, KLK10,	
		normal	and		ADAMTS9, MIR31HG) and five downregulated	
		157 ca	ncer		(SCARA5, EPHB1, CHRDL1, LOC440934,	
		patients'			FOXP2) genes	
		tissues,	50		For this ten genes the most highly enriched GEO	
Papil		paired			terms were: extracellular exosome, cell adhesion,	
lary		normal	and		positive regulation of gene expression, ECM	
thyro	GEO	adjacent			organization, tyrosine metabolism, complement	
id	(array)	cancer			and coagulation cascades, CAMs, transcriptional	
cance	qRT-	patients'		diagn	misregulation and ECM-receptor interaction	
r	PCR	tissues		ostic	pathways	[64]
					MIR31HG , CEBPA-AS1, GVINP1 and RAET1K	
					were selected after Cox analysis and OS	
					prognostic gene signature was developed with	
					high sensitivity and specificity	
					MIR31HG significantly associated with survival	
		TCGA	465		rate,	
		tumor	and		Four-IncRNA signature had prognostic value to	
		43 pa	aired		predict tumor stage T stage, N stage, neoplasm	
Lung	TCGA	normal	and		cancer and primary therapy outcome	
aden	(RNAs	adjacent		diagn	494 genes, which were coexpressed with lncRNAs	
ocarc	eq),	cancer		ostic,	of the risk score model, were associated with	
inom	qRT-	patients'		progn	signal transduction, blood coagulation, pathways	
a	PCR	tissues		ostic	in cancer and chemokine signaling pathways	[47]
Glio	qRT-			diagn	<i>MIR31HG</i> deleted in over 73% of all GBMs	[65]
blast	PCR			ostic,	miR-31 status: 30.92% homozygous null, 42.68%	
oma				progn	heterozygous and 26.40% wildtype	
				ostic	In low grade gliomas <i>MIR31HG</i> status: 6.96%	
					homozygous null, 27.04% heterozygous, and 66%	
					wild type	

				Loss of one or both copies of <i>MIR31HG</i>
				significantly reduced the levels of <i>miR-31</i>
				Homozygous MIR31HG deletions predominantly
				associated with Mes- and C-GBMs
				MIR31HG deletions associated with shorter MMS
				(Median Months Survival) for patients with
				primary GBM and for patients with Mes-GBM
				CDKN2A deletions associated with diminished
				DFS times in all GBM, and patients with N-GBM
				but which lies adjacent to <i>MIR31HG</i> , did not
				predict shorter MMS in patients with Mes-GBM
				or primary GBM
				MIR31HG deletions not associated with
				diminished DFS
				<i>miR-31</i> inhibits <i>TRADD</i> and consequently <i>NF-кB</i>
				signaling and influencing on <i>MIR31HG</i> promoter
				containing three putative NF - κB binding sites
Lung	TCGA	504 LUSC	diagn	<i>MIR31HG</i> is altered as deleted gene in 0.14 [46]
squa	(RNAs	and 522	ostic,	frequency in the case of LUAD
mous	eq)	LUAD	progn	MIR31HG, CDKN2A-AS1 and LINC01600
cell		samples	ostic	predicted poor OS in LUAD
carci		from TCGA		<i>MIR31HG</i> and <i>LINC01600</i> play their roles in
nom				female patients, while <i>CDKN2A-AS1</i> play its role
a and				in male patients
lung				Important molecular functions for both <i>CDKN2A</i> -
aden				AS1 and MIR31HG-coexpressed genes were
ocarc				binding and catalytic activity — the top two
inom				enriched biological pathways were cellular process
а				and metabolic process, and the most enriched
				pathway was the <i>P</i> 53 pathway; <i>IFNE</i> , <i>CDKN2A</i>
				and MTAP
				cBioPortal analysis results showed that all three
		<u> </u>		coexpressed genes shared very similar alteration

				patterns with CDKN2A-AS1 and MIR31HG	
				MTAP was the only gene located between	
				CDKN2A-AS1 and MIR31HG. CDKN2A was next	
				to, and partially overlapped with, CDKN2A-AS1,	
				and <i>IFNE</i> was located in the <i>MIR31HG</i> intron	
				MIR31HGincluded in as one of the recurrence-	
				associated six-lncRNAs (LINC0184, AC105243.1,	
				LOC101928168, ILF3-AS1, and AC006329.1)	
				Score model based on the six-lncRNA signature	
				higher in the recurrent patients than non-recurrent	
				patients	
				lncRNA signatures effectively distinguish between	
				high and low risk of cancer recurrence	
				Only combination of six lncRNAs gives the	
				greatest predictive ability (accuracy rate of 72.2%	
				and AUC of 0.724)	
				Six-lncRNA signature was independent of	
				clinicopathological factors, has potential to	
				differentiated patients, with similar clinical stage,	
				into low and high risk subgroups	
		1089 colon		Patients with higher expression level of these six	
	GEO	cancer		lncRNAs displayed significantly higher recurrence	
	and	patients		risk status and RFS	
Colo	TCGA	from GEO	diagn	Functional analysis of the six lncRNA signature	
n	(Arrays	and 391	ostic,	indicated implication of them into ATP metabolic	
Canc	/RNAse	patients	progn	processes, cell proliferation and angiogenesis, cell	
er	q)	from TCGA	ostic	death, leukocyte differentiation	[66]
Thyr	GEO	57 PTC with	diagn	Upregulated in patients' cancer samples	[53]
oid	and	a reference	ostic,	Correlated with M and N stages and positive	
Canc	TCGA	sample	progn	lymph nodes examined status	
er	(Arrays	(pool of 9	ostic	MIR31HG overexpression correlated with high	
	/RNAse	adjacent		immune infiltrate levels of CD8+ T cells,	
	q),	normal		macrophage, neutrophil, myeloid dendritic cells,	

			1		
		thyroid			
		tissue) and 4			
		PTC agains			
		4 matched	l		
		adjacent			
		normal			
		thyroid		and B cells	
		tissues from	L	Knockdown of <i>MIR31HG</i> reduced cell	
		GEO and	Ĺ	proliferation and cycle progression	
		391 patients		MIR31HG associated with metabolic pathways,	
		from TCGA		vesicle-mediated transport, tricarboxylic acid	
		CAL62 and	l	cycle, Hedgehog signaling pathway, and Hippo	
	qRT-	SW579 cel		signaling pathway including CCND2, CCND3,	
	PCR	lines		SDHC, SDHD, SUCLA2, and SUCLG1	
Colo	GEO	TCGA 647	diagn	MIR31HG with other four lncRNAs (H19,	[48]
recta	and	tumor and	ostic,	HOTAIR, WT1-AS, and LINC00488) closely	
1	TCGA	51 paired	progn	related to the OS	
cance	(Arrays	normal and	ostic	Five-lncRNA signature was independent	
r	/RNAse	adjacent		prognostic marker of the high-risk scores' patients	
	q)	cancer		which had poor survival rates	
		patients'		High-risk score based on five-lncRNA signature	
		tissues and	1	associated with more advanced TNM stages and	
		122		residual tumor	
		patients's		In the univariate analysis risk score of the five-	
		samples		lncRNA model and some of clinical features (age,	
		from GEO		TNM stages, residual tumor) were associated with	
				the OS	
				In the multi-variate analysis, the five-lncRNA	
				model displayed an independent prognostic factor	
				Patient's prognosis separated by risk score and	
				TNM staging were different: patients with lower	
				risk score and tumor grade displayed better	
				prognosis	

				The risk score and clinicopathological features	
				displayed better informative predict the patient's 1,	
				3, 5-year survival	
				Five-lncRNA model was associated with signaling	
				pathway regulating pluripotency of stem cells,	
				WNT, Hippo signaling path-way, basal cell	
				carcinoma and colorectal cancer, negative	
				regulation of translation, extracellular space,	
				transcription from RNA polymerase II promoter,	
				odontogenesis and negative regulation of	
				fibroblast proliferation	
Oral	GEO	167 OSCCs	diagn	MIR31HG and 13 lncRNAs (LOC441178,	[67]
squa	(Arrays	and 45 oral	ostic	C5orf66-AS1, HCG22, FLG-AS1, CCL14/CCL15-	
mous)	mucosa		CCL14, LOC100506990, TRIP10, PCBP1-AS1,	
cell		from healthy		LINC01315, LINC00478, COX10-	
carci		controls		<i>AS1/LOC100506974</i> , <i>MLLT4-AS1</i> , and	
nom		from GEO		DUXAP10/LINC01296) were validated in all three	
a		and		datasets, and were upregulated	
		validation		Its expression differs between HPV-positive OPC	
		using 74		and HPV-negative OPC, and is downregulated in	
		oral cavity		<i>HPV</i> positive ones	
		squamous		It is significantly differentially expressed between	
		cell		subsites of OSCC (OPC vs. OCC)	
		carcinoma		miR31HG levels between smokers and non-	
		and 29		smokers were indicated	
		adjacent		miR31HG was not validated by qRT-PCR in	
		normal		patients samples	
		tissue;			
		GSE9844			
		with 26			
		tongue			
		squamous			
		cell			

		carcinoma			
		and 12			
		matched			
		adjacent			
		normal			
		tissue and			
		GSE6791			
		comprised			
		of 28			
		cervical			
		cancers, 42			
		head and			
		neck cancers			
		and 14 site-			
		matched			
		normal oral			
		tissue from			
		GEO			
				3'366 mRNAs, 79 miRNAs and 151 lncRNAs	
				were identified as involved in development of	
				LUSC	
Lung				Only lncRNA MIR99AHG positively correlated	
squa				with OS and PLAU, miR-31-5p, miR-455-3p,	
mous				FAM83A-AS1, and MIR31HG were negatively	
cell				associated with OS	
carci		TCGA 504		Only <i>PLAU</i> was validated using qRT-PCR and	
nom		tumor and		was upregulated in SK-MES-1 cells compared	
a and		46 paired		with 16-BBE-T cells	
lung		normal and		Changed genes were associated with signal	
aden		adjacent	diagn	transduction, cell adhesion, blood coagulation,	
ocarc	TCGA	cancer	ostic,	immune response, cell proliferation, apoptosis,	
inom	(RNAs	patients'	progn	transmembrane transport or small molecule	
а	eq)	tissues	ostic	metabolic processes	[44]

		39 pairs of			
		LSCC			
		tissues and		1459 lncRNAs (846 up-and 613 down-regulated)	
Lary		adjacent		and 238 mRNAs (1542 up- mRNAs and 839	
ngeal		non-		down-regulated) were differentially expressed,	
squa		neoplastic		ITGB1, HIF1A, and DDIT4 were core mRNAs	
mous		tissues,		involved in matrix organization, cell cycle,	
cell	Arrays	microarray	diagn	adhesion, and metabolic pathway	
carci	and	results	ostic,	MIR31HG was positively correlated with HIF1A	
nom	qRT-	deposit	progn	and IncRNA NR_027340 was positively correlated	
a	PCR	(GSE84957)	ostic	with <i>ITGB1</i>	[68]

qRT-PCR — real-time quantitative reverse transcription polymerase chain reaction; RFS — relapse-free survival; OS — overall survival; TNM — tumor–nodules–metastases; TCGA — Cancer Genome Atlas; EMT — epithelial to mesenchymal transition; VEGF — vascular endothelial growth factor; FOXM1 — forkhead box M1; DF — disease-free survival; CMS — consensus molecular subtype; GSK3β — glycogen synthase kinase 3 beta; PFS — progression-free survival; lncRNAs — long RNAs; IRLs — immune-related lncRNAs; ECM — extracellular matrix; CAMs — cell adhesion molecules; Mes-GBM — mesenchymal glioblastoma; LUAD — Lung adenocarcinoma; LUSC — lung squamous cell carcinoma; AUC — area under the curve; ATP — adenosine triphosphate; PTC — papillary thyroid carcinoma; HPV — human papilloma virus; OSCC — oral cavity squamous cell carcinoma; OPC (oropharyngeal cancer; OCC (oral cavity cancer); LSCC — lung squamous cell carcinoma

"Small but crazy": miR-31

miR-31 is a short non-coding RNA, classified as microRNA (miRNA), and is the product of specific cleavage of *MIR31HG* transcript. miRNA molecules can be responsible for controlling many genes in a differentiated way [69, 70]. *miR-31* affects many processes not only in normally functioning cells, but is also important in disease and cancer processes. Based on results obtained from different tissues and cancer cell lines it was demonstrated that *miR-31* exhibits a whole spectrum of expression depending on tissue type. It is worth mentioning that the *miR-31* precursor was present in all tested cell lines but its mature form was predominantly found in tumor cell lines [71]. *miR-31* regulates cell proliferation by affecting the genes responsible for this process, such as *LATS1*, and *CREG*, in vascular smooth muscle cells [72, 73]. An excellent example is the mechanism studied in colon cancer

cells when *miR-31* overexpression targets *E2F2*, which acts as a tumor suppressor on colon cancer cell proliferation [74]. As for Ewing sarcoma, the effect of *miR-31* was identified as a tumor suppressor. In cell lines transfected with *miR-31*, there was a significant reduction in Ewing sarcoma cell proliferation, as well as increased apoptosis resulting in a decrease in tumor invasiveness [75]. The expression level of *miR-31* in cervical cancer, CIN, and normal uterine tissues was also examined. The results proved that the expression in cancer cells was elevated compared to non-tumor cells, and in addition, this phenomenon appeared to be associated with the occurrence of lymph node metastasis (LNM). It was demonstrated that such an effect increases cell proliferation, and cell migration, and thus invasiveness is also significantly increased, indicating that *miR-31* acts as an oncogene in this case [76]. In patients with non-small cell lung cancer (NSCLC), a relationship was discovered between the expression levels of *MIR31HG* and, consequently, *miR-31*, and the proliferation and clonogenic growth of tumor cells. The study showed that reducing their expression *in vitro* also reduces the growth of NSCLC cells, supporting the fact that *miR-31* had an oncogenic effect [77].

Moreover, *miR-31* plays an important role in the induction of senescence in breast cancer cells. Obtained results showed that overexpression of *miR-31* affected the repression of the polycomb group (PcG) protein BMI1, accompanied by the induction of cell aging. This offers the prospect of manipulating *miR-31* expression to control senescence and oncogenesis in breast cancer [78]. Few studies are based on healthy tissues and the effects on the aging of non-tumorigenic cells. For example, *miR-31* influences aging by regulation of dystrophin protein. Increased expression of *miR-31* resulted in direct inhibition of the translation of this protein which causes aging and damaged processes in muscle cells [79]. Capri et al. examined the miRNA expression levels to determine the age match between donor and recipient in the case of hepatocytes. It was indicated that *miR-31* is hyper-expressed in older donors, at levels up to 4.5 times higher than in younger individuals. Interestingly, these results were only noted in male patients, and female samples showed only a trend of increased expression with age [80]. Moreover, it was indicated in the case of endothelial cells (umbilical cord-derived), that the fold change of *miR-31* was one of the most upregulated miRNAs during the aging process [81].

It should be noted that *miR-31* regulates cell differentiation and has a role in determining cell fate. Li et al. investigated neural stem cells (NSCs) and the process of their differentiation into motor neurons (MNs) and correlated changes in *miR-31* expression with different states. Initial studies showed high levels of expression of this molecule in NSCs derived, for

example, from the spinal cord, while much lower levels in MNs. Comparison of the expression profiles led to the conclusion that high levels of *miR-31* have a stemness-maintaining effect in NSCs by inhibiting differentiation, especially in MNs [82]. Neuronal precursor cells (NPCs) appeared to be another cell in which *miR-31* plays a role in differentiation. It was shown that *Lin28*, *c-Myc*, *SOX2*, and *Oct4* act to inhibit the activity and expression of *miR-31*, consequently, impairing the process of NPC differentiation into astrocytes and astrocyte maturation itself in gliomas. As later analyses showed *miR-31* also downregulates selected stem cell factors mentioned above, which may suggest a reciprocal control of these molecules in astrocytogenesis, where *miR-31* plays a key role [83].

However, based on the PubMed.org database, only 5 studies took into account both types of transcripts, *miR-31* and *MIR31HG*. Tu et al. observed co-upregulation of *miR-31* and *MIR31HG* in oral squamous cell carcinoma, with a linear correlation between both ncRNAs estimated to R = 0.304 and p = 0.047 in patients' samples [84]. Another study, done by Chang et al. showed that artificial upregulation of *MIR31HG* caused the significant elevation of *MIR31HG* and *miR-31* in two cancer cell lines [85]. Surprisingly, Qin et al., in lung adenocarcinoma, indicated no correlation between *MIR31HG* and *miR-31*, and the down-regulation of *MIR31HG* did not cause decreased levels of *miR-31* [45]. Moreover, some evidence indicates that MIR31HG does not always regulate the level of miR-31. It was pointed out that MIR31HG regulates miR-361 and downstream targets influencing cellular phenotype of osteosarcoma cell lines [37].

It is surprising that for some studies the authors did not analyze the common correlation between *miR-31* and *MIR31HG*, which makes it difficult to assess the actual interaction of these molecules with each other [86].

Not only miR-31, but also other miRNAs interact with MIR31HG

IncRNAs can not only affect protein-coding genes, but also other RNAs. The "sponge effect", as it is commonly known, involves the action of lncRNA on individual miRNAs, which directly results in the reduction of its effect on most mRNAs [44]. Recent studies have shown that *MIR31HG* expression is markedly upregulated in pancreatic ductal adenocarcinoma (PDAC). However, knock-out of this molecule resulted in inhibition of PDAC cell growth, apoptosis, and ultimately reduced invasion. Here, the researchers noted the inverse correlation of *MIR31HG* and *miR-193b* in these cells. When *miR-193b* was overexpressed, *MIR31HG* levels decreased significantly and vice versa. Such results demonstrate the negative regulation of *MIR31HG* by miR-193b. Closer examination using a

luciferase reporter and RIP assays suggested that *miR-193b* bound to *MIR31HG* by blocking the binding sites of this molecule to miRNA. This activity of both molecules speaks to *MIR31HG* acting as a sponge binding *miR-193b* to regulate miRNA targets [87].

Conclusions and future directions

Allis and Jenuwein named RNA "one of the master molecules of epigenetic control" [1]. Not so long ago, ncRNAs were perceived as genetic noise and ignored in all analyses and treated as background or experimental errors [5, 88]. The development of new techniques, such as massive RNA sequencing, bioinformatics and even artificial intelligence (AI), caused an unbelievable growth in the number of discoveries of different types of ncRNA molecules [89, 90]. The public release of data from the The Human Cancer Genome (TCGA) project made it possible to analyze the data in terms of searching for, for example, lncRNA, in 33 different cancers [91, 92]. The TCGA is an immeasurable source of knowledge used as the first source of data for selection of genes and later validated in *in vivo* and *in vitro* models. Unfortunately, not all studies adopt this model of analysis. The lack of validation based on an in vivo or in vitro model is questionable as an effect of errors accumulation or assumptions of mathematical models. On the other hand, results derived only from in vivo or in vitro studies can be misleading as the consequences of the cell lines used or the set of patients. It is essential to apply a holistic approach when a study is designed. The lack of comprehensive research causes the knowledge about specific types of ncRNAs still not to be fully defined or validated experimentally. Moreover, many different studies indicated that one lncRNA could behave differently depending on the cancer type [7]. In some cases only one study defines the role of lncRNA in a specific biological process or pathway, which should be verified by independent study. The lack of such an approach is also visible in the case of *MIR31HG*. The second important question concerns the potential use of lncRNA as a biomarker. lncRNAs have all the characteristics of biomarkers, but there are no standardized methods for their measurement and testing [10]. Another issue to consider is which transcript variant should be taken into account. As mentioned earlier, *MIR31HG* has 32 different transcriptional variants, with a length between 287 and 10'980 bp [29]. In some cases, not all variants are equal and they could be expressed in different ways depending on the specific cancer subtype, and have various diagnostic potencies [34]. Most studies regarding not only lncRNAs, but also other types of transcripts, do not explicitly point which transcript variant or variants are being analyzed. Moreover, this information is not included in the TCGA data either. This causes great difficulties in the adaptation of lncRNAs as biomarkers in clinical practice. However,

many studies indicated that lncRNAs may become important tools to predict the development and eventual treatment of cancer in the future [10]. Will they be as useful as classic markers? We assume that the answer to this question will be known within the next decade.

Conflict of interest

Concerning publication of the article titled: Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31, written by Tomasz Kolenda, Anna Paszkowska, Alicja Braska, Joanna Kozłowska-Masłoń, Kacper Guglas, Paulina Poter, Piotr Wojtczak, Renata Bliźniak, Katarzyna Lamperska and Anna Teresiak, the authors declare:

- the contents of this manuscript have not been copyrighted or published previously;
- the contents of the manuscript are not now under consideration for publication elsewhere;
- there is no conflict of interest including financial, personal or other relationships with other people or organizations regarding the publication of this paper;
- this work was supported by Greater Poland Cancer Center grant No.: 12/2021
 (248), 10/11/2021/PGN/WCO/03 and other institutions listed in the acknowledgment.

Financial disclosure

Article titled: *Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31*, written by Tomasz Kolenda, Anna Paszkowska, Alicja Braska, Joanna Kozłowska-Masłoń, Kacper Guglas, Paulina Poter, Piotr Wojtczak, Renata Bliźniak, Katarzyna Lamperska and Anna Teresiak, was supported by the Greater Poland Cancer Center — grant No.: 12/2021 (248), 10/11/2021/PGN/WCO/03 and other institutions listed in the acknowledgment.

Acknowledgment

This work was supported by Greater Poland Cancer Centre – grant No.: 12/2021 (248), 10/11/2021/PGN/WCO/03

While writing this manuscript, Alicja Braska received a "The best in nature 2.0. The integrated program of the Poznań University of Life Sciences" scholarship from University of Life Sciences in Poznań; Joanna Kozłowska-Masłoń received a PhD program scholarship from Adam Mickiewicz University in Poznan; Kacper Guglas received a scholarship from the European Union POWER PhD program; Piotr Wojtczak is a PhD student at Doctoral Studies,

Medical University of Lodz. We would like to thank all the institutions supporting our scientific work.

References

- 1. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016; 17(8): 487-500, doi: <u>10.1038/nrg.2016.59</u>, indexed in Pubmed: <u>27346641</u>.
- Zhang Y, Yang Li, Chen LL. Life without A tail: new formats of long noncoding RNAs. Int J Biochem Cell Biol. 2014; 54: 338-349, doi: <u>10.1016/j.biocel.2013.10.009</u>, indexed in Pubmed: <u>24513732</u>.
- Furuno M, Pang KC, Ninomiya N, et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet. 2006; 2(4): e37, doi: <u>10.1371/journal.pgen.0020037</u>, indexed in Pubmed: <u>16683026</u>.
- 4. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495(7441): 333–338, doi: <u>10.1038/nature11928</u>, indexed in Pubmed: <u>23446348</u>.
- 5. Kozłowska J, Kolenda T, Poter P, et al. Long Intergenic Non-Coding RNAs in HNSCC: From "Junk DNA" to Important Prognostic Factor. Cancers (Basel). 2021; 13(12), doi: 10.3390/cancers13122949, indexed in Pubmed: 34204634.
- 6. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009; 10(3): 155–159, doi: <u>10.1038/nrg2521</u>, indexed in Pubmed: <u>19188922</u>.
- Kolenda T, Guglas K, Ryś M, et al. Biological role of long non-coding RNA in head and neck cancers. Rep Pract Oncol Radiother. 2017; 22(5): 378–388, doi: <u>10.1016/j.rpor.2017.07.001</u>, indexed in Pubmed: <u>28794691</u>.
- Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic noncoding RNA. Nat Rev Mol Cell Biol. 2018; 19(3): 143–157, doi: <u>10.1038/nrm.2017.104</u>, indexed in Pubmed: <u>29138516</u>.
- Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic noncoding RNA. Nat Rev Mol Cell Biol. 2018; 19(3): 143–157, doi: <u>10.1038/nrm.2017.104</u>, indexed in Pubmed: <u>29138516</u>.
- Guglas K, Bogaczyńska M, Kolenda T, et al. IncRNA in HNSCC: challenges and potential. Contemp Oncol (Pozn). 2017; 21(4): 259–266, doi: <u>10.5114/wo.2017.72382</u>, indexed in Pubmed: <u>29416430</u>.
- Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 2012; 13(11): R107, doi: <u>10.1186/gb-2012-13-11-r107</u>, indexed in Pubmed: <u>23181609</u>.
- Hoffmann MJ, Dehn J, Droop J, et al. Truncated Isoforms of IncRNA ANRIL Are Overexpressed in Bladder Cancer, But Do Not Contribute to Repression of INK4 Tumor Suppressors. Noncoding RNA. 2015; 1(3): 266–284, doi: <u>10.3390/ncrna1030266</u>, indexed in Pubmed: <u>29861427</u>.
- **13**. Smith KN, Miller SC, Varani G, et al. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics. 2019; 213(4): 1093-1110, doi: <u>10.1534/genetics.119.302661</u>, indexed in Pubmed: <u>31796550</u>.

- 14. Frankish A, Diekhans M, Ferreira AM, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019; 47(D1): D766-D773, doi: <u>10.1093/nar/gky955</u>, indexed in Pubmed: <u>30357393</u>.
- 15. O'Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016; 44(D1): D733-D745, doi: <u>10.1093/nar/gkv1189</u>, indexed in Pubmed: <u>26553804</u>.
- 16. Volders PJ, Anckaert J, Verheggen K, et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res. 2019; 47(D1): D135-D139, doi: <u>10.1093/nar/gky1031</u>, indexed in Pubmed: <u>30371849</u>.
- Fang S, Zhang L, Guo J, et al. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018; 46(D1): D308-D314, doi: <u>10.1093/nar/gkx1107</u>, indexed in Pubmed: <u>29140524</u>.
- Wang W, Min Lu, Qiu X, et al. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol. 2021; 9: 645647, doi: <u>10.3389/fcell.2021.645647</u>, indexed in Pubmed: <u>34178980</u>.
- Kolenda T, Guglas K, Kopczyńska M, et al. Quantification of long non-coding RNAs using qRT-PCR: comparison of different cDNA synthesis methods and RNA stability. Arch Med Sci. 2021; 17(4): 1006–1015, doi: <u>10.5114/aoms.2019.82639</u>, indexed in Pubmed: <u>34336028</u>.
- Dhir A, Dhir S, Proudfoot NJ, et al. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol. 2015; 22(4): 319– 327, doi: <u>10.1038/nsmb.2982</u>, indexed in Pubmed: <u>25730776</u>.
- Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. Wiley Interdiscip Rev RNA. 2021; 12(3): e1625, doi: <u>10.1002/wrna.1625</u>, indexed in Pubmed: <u>32945142</u>.
- 22. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47(D1): D155–D162, doi: <u>10.1093/nar/gky1141</u>, indexed in Pubmed: <u>30423142</u>.
- 23. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15(8): 509– 524, doi: <u>10.1038/nrm3838</u>, indexed in Pubmed: <u>25027649</u>.
- 24. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11(3): 241–247, doi: 10.1261/rna.7240905, indexed in Pubmed: 15701730.
- 25. Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. Wiley Interdiscip Rev RNA. 2021; 12(3): e1625, doi: <u>10.1002/wrna.1625</u>, indexed in Pubmed: <u>32945142</u>.
- Wong ACH, Rasko JEJ. Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines. 2021; 9(9), doi: <u>10.3390/biomedicines9091268</u>, indexed in Pubmed: <u>34572454</u>.
- Augoff K, McCue B, Plow EF, et al. miR-31 and its host gene IncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012; 11: 5, doi: <u>10.1186/1476-4598-11-5</u>, indexed in Pubmed: <u>22289355</u>.
- 28. HUGO Gene Nomenclature Committee. <u>https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:37187 (2022.02.20)</u>.

- 29. GeneCaRNA: The Human ncRNA Database. <u>https://www.genecards.org/cgi-bin/carddisp.pl?</u> gene=MIR31HG (accessed on 22. (2022.02.20).
- **30.** Nie FQ, Ma S, Xie M, et al. Decreased long noncoding RNA MIR31HG is correlated with poor prognosis and contributes to cell proliferation in gastric cancer. Tumour Biol. 2016; 37(6): 7693–7701, doi: <u>10.1007/s13277-015-4644-z</u>, indexed in Pubmed: <u>26692098</u>.
- **31.** Wang Ru, Ma Z, Feng L, et al. LncRNA MIR31HG targets HIF1A and P21 to facilitate head and neck cancer cell proliferation and tumorigenesis by promoting cell-cycle progression. Mol Cancer. 2018; 17(1): 162, doi: <u>10.1186/s12943-018-0916-8</u>, indexed in Pubmed: <u>30458787</u>.
- **32.** Xin C, Bi X, Xiao C, et al. MIR31HG regulates the proliferation, migration and invasion of breast cancer by regulating the expression of POLDIP2. J BUON. 2021; 26(2): 459–465, indexed in Pubmed: <u>34076993</u>.
- 33. Zheng S, Zhang X, Wang X, et al. MIR31HG promotes cell proliferation and invasion by activating the Wnt/β-catenin signaling pathway in non-small cell lung cancer. Oncol Lett. 2019; 17(1): 221–229, doi: <u>10.3892/ol.2018.9607</u>, indexed in Pubmed: <u>30655759</u>.
- **34.** Wu S, Nitschke K, Worst TS, et al. Long noncoding RNA MIR31HG and its splice variants regulate proliferation and migration: prognostic implications for muscle invasive bladder cancer. J Exp Clin Cancer Res. 2020; 39(1): 288, doi: <u>10.1186/s13046-020-01795-5</u>, indexed in Pubmed: <u>33334367</u>.
- **35.** Han Y, Yang Q, Huang Y, et al. Mechanical force inhibited hPDLSCs proliferation with the downregulation of MIR31HG via DNA methylation. Oral Dis. 2021; 27(5): 1268–1282, doi: 10.1111/odi.13637, indexed in Pubmed: 32890413.
- **36**. Montes M, Lubas M, Arendrup FS, et al. The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat Commun. 2021; 12(1): 2459, doi: <u>10.1038/s41467-021-22746-4</u>, indexed in Pubmed: <u>33911076</u>.
- **37**. Sun Y, Jia X, Wang M, et al. Long noncoding RNA MIR31HG abrogates the availability of tumor suppressor microRNA-361 for the growth of osteosarcoma. Cancer Manag Res. 2019; 11: 8055–8064, doi: 10.2147/CMAR.S214569, indexed in Pubmed: 31564967.
- **38**. Feng Bo, Chen Ke, Zhang W, et al. Silencing of IncRNA MIR31HG promotes nasopharyngeal carcinoma cell proliferation and inhibits apoptosis through suppressing the PI3K/AKT signaling pathway. J Clin Lab Anal. 2022; 36(12): e24720, doi: <u>10.1002/jcla.24720</u>, indexed in Pubmed: <u>36347827</u>.
- **39.** Gao J, Chen F, Hua M, et al. Knockdown of IncRNA MIR31HG inhibits cell proliferation in human HaCaT keratinocytes. Biol Res. 2018; 51(1): 30, doi: <u>10.1186/s40659-018-0181-8</u>, indexed in Pubmed: <u>30180891</u>.
- 40. Montes M, Nielsen MM, Maglieri G, et al. The IncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Commun. 2015; 6: 6967, doi: <u>10.1038/ncomms7967</u>, indexed in Pubmed: <u>25908244</u>.
- 41. Montes M, Lubas M, Arendrup FS, et al. The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat Commun. 2021; 12(1): 2459, doi: 10.1038/s41467-021-22746-4, indexed in Pubmed: <u>33911076</u>.
- 42. He A, Chen Z, Mei H, et al. Decreased expression of LncRNA MIR31HG in human bladder cancer. Cancer Biomark. 2016; 17(2): 231–236, doi: <u>10.3233/CBM-160635</u>, indexed in Pubmed: <u>27434291</u>.

- 43. Dandan Wu, Jianliang C, Haiyan He, et al. Long noncoding RNA MIR31HG is activated by SP1 and promotes cell migration and invasion by sponging miR-214 in NSCLC. Gene. 2019; 692: 223–230, doi: <u>10.1016/j.gene.2018.12.077</u>, indexed in Pubmed: <u>30659947</u>.
- 44. Ning P, Wu Z, Hu A, et al. Integrated genomic analyses of lung squamous cell carcinoma for identification of a possible competitive endogenous RNA network by means of TCGA datasets. PeerJ. 2018; 6: e4254, doi: <u>10.7717/peerj.4254</u>, indexed in Pubmed: <u>29340250</u>.
- 45. Qin J, Ning H, Zhou Y, et al. LncRNA MIR31HG overexpression serves as poor prognostic biomarker and promotes cells proliferation in lung adenocarcinoma. Biomed Pharmacother. 2018; 99: 363–368, doi: <u>10.1016/j.biopha.2018.01.037</u>, indexed in Pubmed: <u>29367106</u>.
- 46. Liu B, Chen Y, Yang J. LncRNAs are altered in lung squamous cell carcinoma and lung adenocarcinoma. Oncotarget. 2017; 8(15): 24275–24291, doi: <u>10.18632/oncotarget.13651</u>, indexed in Pubmed: <u>27903974</u>.
- 47. Sui J, Yang S, Liu T, et al. Molecular characterization of lung adenocarcinoma: A potential four-long noncoding RNA prognostic signature. J Cell Biochem. 2019; 120(1): 705-714, doi: <u>10.1002/jcb.27428</u>, indexed in Pubmed: <u>30125988</u>.
- 48. Zhang H, Wang Z, Wu J, et al. Long noncoding RNAs predict the survival of patients with colorectal cancer as revealed by constructing an endogenous RNA network using bioinformation analysis. Cancer Med. 2019; 8(3): 863–873, doi: <u>10.1002/cam4.1813</u>, indexed in Pubmed: <u>30714675</u>.
- **49.** Eide PW, Eilertsen IA, Sveen A, et al. Long noncoding RNA MIR31HG is a bona fide prognostic marker with colorectal cancer cell-intrinsic properties. Int J Cancer. 2019; 144(11): 2843–2853, doi: <u>10.1002/ijc.31998</u>, indexed in Pubmed: <u>30447009</u>.
- 50. Guo T, Liu D, Peng S, et al. A Positive Feedback Loop of IncRNA MIR31HG-miR-361-3p -YY1 Accelerates Colorectal Cancer Progression Through Modulating Proliferation, Angiogenesis, and Glycolysis. Front Oncol. 2021; 11: 684984, doi: <u>10.3389/fonc.2021.684984</u>, indexed in Pubmed: <u>34485123</u>.
- 51. Qin F, Xu H, Wei G, et al. A Prognostic Model Based on the Immune-Related IncRNAs in Colorectal Cancer. Front Genet. 2021; 12: 658736, doi: <u>10.3389/fgene.2021.658736</u>, indexed in Pubmed: <u>33959151</u>.
- 52. Peng S, Chen L, Yuan Z, et al. Suppression of MIR31HG affects the functional properties of thyroid cancer cells depending on the miR-761/MAPK1 axis. BMC Endocr Disord. 2022; 22(1): 107, doi: <u>10.1186/s12902-022-00962-3</u>, indexed in Pubmed: <u>35443670</u>.
- 53. Chen C, Qin Lu, Xiao MF. Long Noncoding RNA LOC554202 Predicts a Poor Prognosis and Correlates with Immune Infiltration in Thyroid Cancer. Comput Math Methods Med. 2022; 2022: 3585626, doi: <u>10.1155/2022/3585626</u>, indexed in Pubmed: <u>35265169</u>.
- 54. Xu HL, Tian FZ. Clinical significance of IncRNA MIR31HG in melanoma. Eur Rev Med Pharmacol Sci. 2020; 24(8): 4389–4395, doi: <u>10.26355/eurrev_202004_21020</u>, indexed in Pubmed: <u>32373976</u>.
- 55. Chang KW, Hung WW, Chou CH, et al. LncRNA Drives Oncogenicity by Inhibiting the Limb-Bud and Heart Development Gene () during Oral Carcinoma. Int J Mol Sci. 2021; 22(16), doi: <u>10.3390/ijms22168383</u>, indexed in Pubmed: <u>34445087</u>.
- 56. Li Y. MIR31HG exhibits oncogenic property and acts as a sponge for miR-361-3p in cervical carcinoma. Biochem Biophys Res Commun. 2020; 529(4): 890-897, doi: 10.1016/j.bbrc.2020.06.028, indexed in Pubmed: 32819595.

- 57. Yan S, Tang Z, Chen Ke, et al. Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. J Exp Clin Cancer Res. 2018; 37(1): 214, doi: <u>10.1186/s13046-018-0853-9</u>, indexed in Pubmed: <u>30176933</u>.
- 58. Yang H, Liu P, Zhang J, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene. 2016; 35(28): 3647-3657, doi: <u>10.1038/onc.2015.430</u>, indexed in Pubmed: <u>26549028</u>.
- **59.** Ren ZP, Chu XY, Xue ZQ, et al. Down-regulation of IncRNA MIR31HG correlated with aggressive clinicopathological features and unfavorable prognosis in esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2017; 21(17): 3866–3870, indexed in Pubmed: <u>28975978</u>.
- **60.** Sun K, Zhao X, Wan J, et al. The diagnostic value of long non-coding RNA MIR31HG and its role in esophageal squamous cell carcinoma. Life Sci. 2018; 202: 124–130, doi: <u>10.1016/j.lfs.2018.03.050</u>, indexed in Pubmed: <u>29605445</u>.
- **61.** Shih JW, Chiang WF, Wu ATH, et al. Long noncoding RNA LncHIFCAR/MIR31HG is a HIF-1α co-activator driving oral cancer progression. Nat Commun. 2017; 8: 15874, doi: <u>10.1038/ncomms15874</u>, indexed in Pubmed: <u>28639619</u>.
- **62.** Li Na, Zhan X. Identification of clinical trait-related IncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 2019; 10(3): 273–290, doi: <u>10.1007/s13167-019-00175-0</u>, indexed in Pubmed: <u>31462944</u>.
- **63.** Wang XJ, Zeng B, Lin S, et al. An Integrated miRNA-IncRNA Signature Predicts the Survival of Stage II Colon Cancer. Ann Clin Lab Sci. 2019; 49(6): 730–739, indexed in Pubmed: <u>31882423</u>.
- 64. Sun T, Guan Q, Wang Y, et al. Identification of differentially expressed genes and signaling pathways in papillary thyroid cancer: a study based on integrated microarray and bioinformatics analysis. Gland Surg. 2021; 10(2): 629-644, doi: <u>10.21037/gs-20-673</u>, indexed in Pubmed: <u>33708546</u>.
- 65. Rajbhandari R, McFarland BC, Patel A, et al. Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget. 2015; 6(19): 17805-17816, doi: <u>10.18632/oncotarget.4596</u>, indexed in Pubmed: <u>26164206</u>.
- 66. Zhou M, Hu L, Zhang Z, et al. Recurrence-Associated Long Non-coding RNA Signature for Determining the Risk of Recurrence in Patients with Colon Cancer. Mol Ther Nucleic Acids. 2018; 12: 518–529, doi: 10.1016/j.omtn.2018.06.007, indexed in Pubmed: 30195788.
- 67. Feng Lu, Houck JR, Lohavanichbutr P, et al. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa. Oncotarget. 2017; 8(19): 31521–31531, doi: <u>10.18632/oncotarget.16358</u>, indexed in Pubmed: <u>28415559</u>.
- 68. Feng L, Wang Ru, Lian M, et al. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma. PLoS One. 2016; 11(12): e0169232, doi: 10.1371/journal.pone.0169232, indexed in Pubmed: 28033431.
- **69.** Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1): 15–20, doi: <u>10.1016/j.cell.2004.12.035</u>, indexed in Pubmed: <u>15652477</u>.

- 70. Stepicheva NA, Song JL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev. 2016; 83(8): 654-674, doi: <u>10.1002/mrd.22678</u>, indexed in Pubmed: <u>27405090</u>.
- 71. Lee EJ, Baek M, Gusev Y, et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA. 2008; 14(1): 35–42, doi: <u>10.1261/rna.804508</u>, indexed in Pubmed: <u>18025253</u>.
- 72. Liu X, Cheng Y, Chen X, et al. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem. 2011; 286(49): 42371-42380, doi: <u>10.1074/jbc.M111.261065</u>, indexed in Pubmed: <u>22020941</u>.
- **73.** Wang J, Yan CH, Li Y, et al. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Exp Cell Res. 2013; 319(8): 1165–1175, doi: <u>10.1016/j.yexcr.2013.03.010</u>, indexed in Pubmed: <u>23518389</u>.
- 74. Li T, Luo W, Liu K, et al. miR-31 promotes proliferation of colon cancer cells by targeting E2F2. Biotechnol Lett. 2015; 37(3): 523–532, doi: <u>10.1007/s10529-014-1715-y</u>, indexed in Pubmed: <u>25362258</u>.
- 75. Karnuth B, Dedy N, Spieker T, et al. Differentially expressed miRNAs in Ewing sarcoma compared to mesenchymal stem cells: low miR-31 expression with effects on proliferation and invasion. PLoS One. 2014; 9(3): e93067, doi: <u>10.1371/journal.pone.0093067</u>, indexed in Pubmed: <u>24667836</u>.
- 76. Zheng W, Liu Z, Zhang W, et al. miR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet. 2015; 292(5): 1083–1089, doi: <u>10.1007/s00404-015-3713-2</u>, indexed in Pubmed: <u>25894339</u>.
- 77. He J, Jin S, Zhang W, et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer. 2019; 10(24): 6003-6013, doi: <u>10.7150/jca.35097</u>, indexed in Pubmed: <u>31762810</u>.
- 78. Cho JH, Dimri M, Dimri GP. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J Biol Chem. 2015; 290(16): 10555-10567, doi: <u>10.1074/jbc.M114.624361</u>, indexed in Pubmed: <u>25737447</u>.
- **79.** Hughes DC, Marcotte GR, Baehr LM, et al. Alterations in the muscle force transfer apparatus in aged rats during unloading and reloading: impact of microRNA-31. J Physiol. 2018; 596(14): 2883-2900, doi: <u>10.1113/JP275833</u>, indexed in Pubmed: <u>29726007</u>.
- 80. Capri M, Olivieri F, Lanzarini C, et al. Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell. 2017; 16(2): 262–272, doi: <u>10.1111/acel.12549</u>, indexed in Pubmed: <u>27995756</u>.
- 81. Kuosmanen SM, Kansanen E, Sihvola V, et al. MicroRNA Profiling Reveals Distinct Profiles for Tissue-Derived and Cultured Endothelial Cells. Sci Rep. 2017; 7(1): 10943, doi: 10.1038/s41598-017-11487-4, indexed in Pubmed: 28887500.
- 82. Li P, Gao Y, Li X, et al. mRNA and miRNA expression profile reveals the role of miR-31 overexpression in neural stem cell. Sci Rep. 2020; 10(1): 17537, doi: <u>10.1038/s41598-020-74541-8</u>, indexed in Pubmed: <u>33067542</u>.
- 83. Meares GP, Rajbhandari R, Gerigk M, et al. MicroRNA-31 is required for astrocyte specification. Glia. 2018; 66(5): 987–998, doi: <u>10.1002/glia.23296</u>, indexed in Pubmed: <u>29380422</u>.

- 84. Tu HF, Liu CJ, Hung WW, et al. Co-upregulation of and its host gene IncRNA in oral squamous cell carcinoma. J Dent Sci. 2022; 17(2): 696–706, doi: <u>10.1016/j.jds.2021.11.006</u>, indexed in Pubmed: <u>35756773</u>.
- 85. Chang KW, Hung WW, Chou CH, et al. LncRNA Drives Oncogenicity by Inhibiting the Limb-Bud and Heart Development Gene () during Oral Carcinoma. Int J Mol Sci. 2021; 22(16), doi: <u>10.3390/ijms22168383</u>, indexed in Pubmed: <u>34445087</u>.
- 86. Cai P, Li H, Huo W, et al. Aberrant expression of LncRNA-MIR31HG regulates cell migration and proliferation by affecting miR-31 and miR-31* in Hirschsprung's disease. J Cell Biochem. 2018; 119(10): 8195-8203, doi: <u>10.1002/jcb.26830</u>, indexed in Pubmed: <u>29626357</u>.
- 87. Yang H, Liu P, Zhang J, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene. 2016; 35(28): 3647-3657, doi: <u>10.1038/onc.2015.430</u>, indexed in Pubmed: <u>26549028</u>.
- 88. Stasiak M, Kolenda T, Kozłowska-Masłoń J, et al. The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life (Basel). 2021; 11(12), doi: 10.3390/life11121354, indexed in Pubmed: <u>34947885</u>.
- 89. Story MD, Durante M, Norbury JW, et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sci Space Res (Amst). 2016; 8(11): 38–51, doi: <u>10.1016/j.lssr.2016.02.001</u>, indexed in Pubmed: <u>26948012</u>.
- **90.** Schofield PN, Kulka U, Tapio S, et al. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol. 2019; 95(7): 861–878, doi: <u>10.1080/09553002.2019.1589026</u>, indexed in Pubmed: <u>30888231</u>.
- **91.** Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015; 19(1A): A68-A77, doi: 10.5114/wo.2014.47136, indexed in Pubmed: 25691825.
- 92. Kozłowska-Masłoń J, Guglas K, Paszkowska A, et al. Radio-IncRNAs: Biological Function and Potential Use as Biomarkers for Personalized Oncology. J Pers Med. 2022; 12(10), doi: 10.3390/jpm12101605, indexed in Pubmed: 36294743.

Figure 1. Two main branches of epigenetics elements involved in cell function can be distinguished and they are based on DNA and RNA level. On the DNA level, three main changes include: **A.** DNA methylation: which involves changes in methylation by adding methyl groups to the DNA molecule and when appeared in the promoter region; **B.** histone modification which is a chemical modification of amino acids that build the histone proteins causing changes in specific genes' regions; and **C.** Chromatin remodeling: which causes changes in chromatin structure and generates accessible and no-accesible parts' of the genome. On the RNA level it is the production of different types of non-coding RNA molecules which are involved in: **D.** Regulation of mRNA and ncRNA levels by sponging mechanism and influencing transcription process; and **E.** Modification of RNA molecules by

capping, polyadenylation, alternative splicing, and editing. All of these processes cause modifications in gene transcription

Figure 2. MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation.

Figure 3. Dysregulation and function of MIR31HG as a potential biomarker in different types of cancers. Red arrows indicate an increase, and blue, a decrease in the level of MIR31HG expression in a tumor of a given location

