11 research outputs found

    Dexamethasone affects Fas- and serum deprivation-induced cell death of human osteoblastic cells through survivin regulation.

    No full text
    Glucocorticoid-induced bone loss is the most prevalent form of secondary osteoporosis. Such loss could be due to the alteration of osteoclast and osteoblast lifespan through regulated apoptosis. The current study investigated the effect of dexamethasone on Fas- and starvation-induced apoptosis of mature osteoblasts and their precursors. Using the human osteoblastic hFOB1.19 and the MG63 osteosarcoma cell lines, we found that sub-lethal doses of dexamethasone act on pre-osteoblasts but not on mature cells by increasing their susceptibility to apoptosis. Apoptosis occurs in a caspase-dependent manner as both DNA fragmentation and mitochondrial transmembrane potential dissipation (ΔΨm) are inhibited by the pan-caspase inhibitor zVAD. The increased susceptibility of osteoblast precursors to apoptosis could be due to dexamethasonemediated down-regulation of survivin expression. Dexamethasone can up-regulate survivin, and to a lesser extent Bcl-2, in mature cells but not in pre-osteoblasts. In addition, it can induce FLIP over-expression in osteosarcoma cells. All these effects are inhibited by the glucocorticoid antagonist RU486, indicating that dexamethasone action is specific and, furthermore, that it depends on glucocorticoid receptor. Finally, we have found that survivin and Bcl-2 are essential for pre- and mature osteoblast survival as their silencing is sufficient to induce spontaneous apoptosis in both cell types. In conclusion, our data outline a new molecular mechanism of glucocorticoid-mediated bone loss due to the enhanced apoptosis of precursors compared to mature osteoblasts. Furthermore, the data suggest a mechanism of dexamethasone-induced resistance of osteosarcoma cells to Fas- and stress-induced apoptosis

    Dexamethasone affects Fas- and serum deprivation-induced cell death of human osteoblastic cells through survivin regulation.

    No full text
    Glucocorticoid-induced bone loss is the most prevalent form of secondary osteoporosis. Such loss could be due to the alteration of osteoclast and osteoblast lifespan through regulated apoptosis. The current study investigated the effect of dexamethasone on Fas- and starvation-induced apoptosis of mature osteoblasts and their precursors. Using the human osteoblastic hFOB1.19 and the MG63 osteosarcoma cell lines, we found that sub-lethal doses of dexamethasone act on pre-osteoblasts but not on mature cells by increasing their susceptibility to apoptosis. Apoptosis occurs in a caspase-dependent manner as both DNA fragmentation and mitochondrial transmembrane potential dissipation (ΔΨm) are inhibited by the pan-caspase inhibitor zVAD. The increased susceptibility of osteoblast precursors to apoptosis could be due to dexamethasonemediated down-regulation of survivin expression. Dexamethasone can up-regulate survivin, and to a lesser extent Bcl-2, in mature cells but not in pre-osteoblasts. In addition, it can induce FLIP over-expression in osteosarcoma cells. All these effects are inhibited by the glucocorticoid antagonist RU486, indicating that dexamethasone action is specific and, furthermore, that it depends on glucocorticoid receptor. Finally, we have found that survivin and Bcl-2 are essential for pre- and mature osteoblast survival as their silencing is sufficient to induce spontaneous apoptosis in both cell types. In conclusion, our data outline a new molecular mechanism of glucocorticoid-mediated bone loss due to the enhanced apoptosis of precursors compared to mature osteoblasts. Furthermore, the data suggest a mechanism of dexamethasone-induced resistance of osteosarcoma cells to Fas- and stress-induced apoptosis

    Novel metabolic role for BDNF in pancreatic β-cell insulin secretion

    Get PDF
    BDNF signaling in hypothalamic circuitries regulates mammalian food intake. However, whether BDNF exerts metabolic effects on peripheral organs is currently unknown. Here, we show that the BDNF receptor TrkB.T1 is expressed by pancreatic β-cells where it regulates insulin release. Mice lacking TrkB.T1 show impaired glucose tolerance and insulin secretion. β-cell BDNF-TrkB.T1 signaling triggers calcium release from intracellular stores, increasing glucose-induced insulin secretion. Additionally, BDNF is secreted by skeletal muscle and muscle-specific BDNF knockout phenocopies the β-cell TrkB.T1 deletion metabolic impairments. The finding that BDNF is also secreted by differentiated human muscle cells and induces insulin secretion in human islets via TrkB.T1 identifies a new regulatory function of BDNF on metabolism that is independent of CNS activity. Our data suggest that muscle-derived BDNF may be a key factor mediating increased glucose metabolism in response to exercise, with implications for the treatment of diabetes and related metabolic diseases

    Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment.

    No full text
    Cancer is generally characterized by loss of CG dinucleotides methylation resulting in a global hypomethylation and the consequent genomic instability. The major contribution to the general decreased methylation levels seems to be due to demethylation of heterochromatin repetitive DNA sequences. In human immunodeficiency, centromeric instability and facial anomalies syndrome, demethylation of pericentromeric satellite 2 DNA sequences has been correlated to functional mutations of the de novo DNA methyltransferase 3b (DNMT3b), but the mechanism responsible for the hypomethylated status in tumors is poorly known. Here, we report that human glioblastoma is affected by strong hypomethylation of satellite 2 pericentromeric sequences that involves the stem cell compartment. Concomitantly with the integrity of the DNMTs coding sequences, we report aberrations in DNA methyltrasferases expression showing upregulation of the DNA methyltransferase 1 (DNMT1) and downregulation of the de novo DNA methyltransferase 3a (DNMT3a). Moreover, we show that DNMT3a is the major de novo methyltransferase expressed in normal neural progenitor cells (NPCs) and its forced re-expression is sufficient to partially recover the methylation levels of satellite 2 repeats in glioblastoma cell lines. Thus, we speculate that DNMT3a decreased expression may be involved in the early post-natal inheritance of an epigenetically altered NPC population that could be responsible for glioblastoma development later in adult life

    Rbfox1 up-regulation impairs bdnfdependent hippocampal LTP by dysregulating TrkB isoform expression levels

    No full text
    Brain-derived neurotrophic factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its Ntrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB. T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes

    Loss of pericentromeric DNA methylation pattern in human Glioblastoma is associated with altered DNA methyltransferases (DNMTs) expression and involves the Stem Cell compartment.

    Get PDF
    Cancer is generally characterized by loss of CG dinucleotides methylation resulting in a global hypomethylation and the consequent genomic instability. The major contribution to the general decreased methylation levels seems to be due to demethylation of heterochromatin repetitive DNA sequences. In human immunodeficiency, centromeric instability and facial anomalies syndrome, demethylation of pericentromeric satellite 2 DNA sequences has been correlated to functional mutations of the de novo DNA methyltransferase 3b (DNMT3b), but the mechanism responsible for the hypomethylated status in tumors is poorly known. Here, we report that human glioblastoma is affected by strong hypomethylation of satellite 2 pericentromeric sequences that involves the stem cell compartment. Concomitantly with the integrity of the DNMTs coding sequences, we report aberrations in DNA methyltrasferases expression showing upregulation of the DNA methyltransferase 1 (DNMT1) and downregulation of the de novo DNA methyltransferase 3a (DNMT3a). Moreover, we show that DNMT3a is the major de novo methyltransferase expressed in normal neural progenitor cells (NPCs) and its forced re-expression is sufficient to partially recover the methylation levels of satellite 2 repeats in glioblastoma cell lines. Thus, we speculate that DNMT3a decreased expression may be involved in the early post-natal inheritance of an epigenetically altered NPC population that could be responsible for glioblastoma development later in adult life

    Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment

    No full text
    Cancer is generally characterized by loss of CG dinucleotides methylation resulting in a global hypomethylation and the consequent genomic instability. The major contribution to the general decreased methylation levels seems to be due to demethylation of heterochromatin repetitive DNA sequences. In human immunodeficiency, centromeric instability and facial anomalies syndrome, demethylation of pericentromeric satellite 2 DNA sequences has been correlated to functional mutations of the de novo DNA methyltransferase 3b (DNMT3b), but the mechanism responsible for the hypomethylated status in tumors is poorly known. Here, we report that human glioblastoma is affected by strong hypomethylation of satellite 2 pericentromeric sequences that involves the stem cell compartment. Concomitantly with the integrity of the DNMTs coding sequences, we report aberrations in DNA methyltrasferases expression showing upregulation of the DNA methyltransferase 1 (DNMT1) and downregulation of the de novo DNA methyltransferase 3a (DNMT3a). Moreover, we show that DNMT3a is the major de novo methyltransferase expressed in normal neural progenitor cells (NPCs) and its forced re-expression is sufficient to partially recover the methylation levels of satellite 2 repeats in glioblastoma cell lines. Thus, we speculate that DNMT3a decreased expression may be involved in the early post-natal inheritance of an epigenetically altered NPC population that could be responsible for glioblastoma development later in adult life. \uc2\ua9 2008 Nature Publishing Group All rights reserved
    corecore