23 research outputs found

    Selective dopamine D2 receptor deletion from Nkx6.2 expressing cells causes impaired cognitive, motivation and anxiety phenotypes in mice

    Get PDF
    Abnormal dopamine neurotransmission is a common trait of some psychiatric diseases, like schizophrenia or bipolar disorder. Excessive dopaminergic tone in subcortical brain regions is associated with psychotic episodes, while reduced prefrontal dopaminergic activity is associated with impaired cognitive performance and reduced motivation, among other symptoms. Inhibitory interneurons expressing the calcium binding protein parvalbumin are particularly affected in both schizophrenia and bipolar disorder, as they set a fine-tuned physiological inhibitory/excitatory balance. Parvalbumin and somatostatin interneuron subtypes, are born from the medial ganglionic eminence and require the sequential expression of specific transcription factors for their specification, such as Nkx6.2. Here, we aimed at characterizing in detail interneuron subtypes derived from Nkx6.2 expressing progenitors by the generation of an Nkx6.2 Cre transgenic mouse line. We show that Nkx6.2 specifies over a third part of the total population of cortical somatostatin interneurons, preferentially at early developmental time points, whereas at late developmental stages, Nkx6.2 expressing progenitors shift to parvalbumin interneuron specification. Dopamine D2 receptor deletion from Nkx6.2 expressing progenitors causes abnormal phenotypes restricted to cognitive, motivation and anxiety domains. Our results show that Nkx6.2 have the potential to specify both somatostatin and parvalbumin interneurons in an opposite timed program and that DRD2 expression is required in Nkx6.2 expressing progenitors to avoid impaired phenotypes commonly associated to the pathophysiology of psychiatric diseases.Fil: Bechelli, Maria Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Tomasella, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lopez Cardoso, Sofia Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Belmonte, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Gelman, Diego Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad Argentina de la Empresa; Argentin

    Best Procedures for Leaf and Stem Water Potential Measurements in Grapevine: Cultivar and Water Status Matter

    Get PDF
    : The pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψleaf) measurements and the minimum equilibration time for stem water potential (Ψstem) determination, taking 24 h leaf cover as control. In 'Pinot gris', Ψleaf already decreased after 1 h leaf storage in both campaigns, dropping by 0.4/0.5 MPa after 3 h, while in 'Refosk', it decreased by 0.1 MPa after 1 and 2 h in Es and Ls, respectively. In 'Merlot' and 'Merlot Kanthus', even 3 h storage did not affect Ψleaf. In Es, the minimum Ψstem equilibration was 1 h for 'Refošk' and 10 min for 'Pinot gris' and 'Merlot'. In Ls, 'Merlot Kanthus' required more than 2 h equilibration, while 1 h to 10 min was sufficient for the other cultivars. The observed cultivar and seasonal differences indicate that the proposed tests should be routinely performed prior to experiments to define ad hoc procedures for water status determination

    Projections of leaf turgor loss point shifts under future climate change scenarios

    Get PDF
    Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, while for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change

    Contrasting Responses of Two Grapevine Cultivars to Drought: The Role of Non-structural Carbohydrates in Xylem Hydraulic Recovery

    Get PDF
    Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased & psi;(pd) in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT

    The optical method based on gas injection overestimates leaf vulnerability to xylem embolism in three woody species

    Get PDF
    Plant hydraulic traits related to leaf drought tolerance like the water potential at turgor loss point (TLP) and the water potential inducing 50% loss of hydraulic conductance (P50), are extremely useful to predict potential impacts of drought on plants. While novel techniques allowed the inclusion of TLP in studies targeting a large group of species, fast and reliable protocols to measure leaf P50 are still lacking. Recently, the optical method coupled with the gas-injection (GI) technique has been proposed as a possibility to speed up P50 estimation. Here, we present a comparison of leaf optical vulnerability curves (OVc) measured in three woody species, namely F Acer campestre (Ac), Ostya carpinifolia (Oc) and Populus nigra (Pn), based on bench dehydration (BD) or gas-injection (GI) of detached branches. For Pn, we also compared optical data with direct micro-CT imaging in both intact saplings and cut shoots subjected to BD. Based on the BD e procedure, Ac, Oc and Pn had P50 values of -2.87, -2.47 and -2.11 MPa, respectively, while the GI procedure overestimated leaf vulnerability (2.68, 2.04 and 1.54 MPa for Ac, Oc and Pn, respectively). The overestimation was higher for Oc and Pn than for Ac, likely reflecting the species-specific e vessel lengths. According to micro-CT observations performed on Pn, the leaf midrib showed none or very few embolized conduits at -1.2 MPa, consistent with the OVc obtained with the BD procedure but at odds with that derived on the basis of GI. Overall, our data suggest that coupling the optical method with GI might not be a reliable technique to quantify leaf hydraulic vulnerability, since it could be affected by the ‘open-vessel’ artefact. Accurate detection of xylem embolism in the leaf vein network should be based on BD, preferably of intact up-rooted plants

    Bedrock: the hidden water reservoir for trees challenged by drought

    No full text
    Key message: Bedrock can store appreciable amounts of available water, and some trees apparently use this resource to survive drought. Several forest ecosystems rely on only shallow soil layers overlying more or less compact bedrock. In such habitats, the largest water reservoir can be represented by rock moisture, rather than by soil water. Here, we review evidence for the presence of water available for root water uptake in some rock types, and show examples of the physiological and ecological roles of rock moisture, especially when trees are facing drought conditions. The possible magnitude of rock-root water exchanges is discussed in the frame of current knowledge of rock, soil, and root hydraulic properties. We highlight several areas of uncertainty regarding the role of rock moisture in preventing tree hydraulic failure under drought, the exact pathway(s) available for rock-root water exchange, and the relative efficiencies of water transport in the different compartments of the rock-soil-root continuum. Overall, available experimental evidence suggests that bedrock water should be incorporated into any model describing the forest seasonal water use and tree responses to drought.ISSN:0931-1890ISSN:1432-228

    Development of a simple, mobile MRI plant imager

    No full text
    The application of non-invasive imaging technologies has had a large impact on the study of plant water relations. Magnetic Resonance Imaging (MRI) has made it possible to image the presence of water or the appearance of emboli in the xylem, or to measure, visualize and quantify flow. However, due to the cost, size and specialized nature of the MRI equipment, so far the method has only been applied to plants by a few laboratories world-wide. To make the method more accessible, but also make it available for use in the greenhouse or field, we constructed a basic, mobile MRI imager for plants, maximizing for making it cheap and simple to use.At the basis of this work was the construction of a mobile 0.25 T, 45 mm gap, C-shaped permanent magnet with a weight of about 16 kg, suitable for MR imaging of objects up to 20 mm diameter. The magnet was fitted with a set of custom built plane-parallel imaging coils, designed for maximum field of view and image resolution, while still offering open access for plant stems. Using a permanent magnet is beneficial due to low purchase and running costs, since neither any power nor liquid gases are required to run it.In a first demonstration experiment we investigated the effect of drought stress on young spruce and beech trees during a 40 day dry down experiment. Considering the simplicity of the setup and the small size of the magnet, surprisingly highly resolved images could already be acquired with the very first protoype. By means of this data that was obtained weekly over the whole dry down period, insights could be gained on where emboli occur first in the stems of the two species

    A small‐scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation

    Get PDF
    Magnetic resonance imaging (MRI) is a useful tool to image xylem embolism formation in plants. MRI scanners configured to accept intact plants are rare and expensive. Here, we investigate if affordable small-scale, custom-built low-field MRI scanners would suffice for the purpose. * A small-scale, C-shaped permanent magnet was paired with open, plane parallel imaging gradients. The setup was small enough to fit between leaves or branches and offered open access for plant stems of arbitrary length. To counter the two main drawbacks of the system, low signal to noise and reduced magnetic field homogeneity, a multi-spin echo (MSE) pulse sequence was implemented, allowing efficient signal acquisition and quantitative imaging of water content and T2 signal relaxation. * The system was tested visualizing embolism formation in Fagus sylvatica during bench dehydration. High-quality images of water content and T2 were readily obtained, which could be utilized to detect the cavitation of vessels smaller than could be spatially resolved. A multiplication of both map types yielded images in which filled xylem appeared with even greater contrast. * T2 imaging with small-scale MRI devices allows straightforward visualization of the spatial and temporal dynamics of embolism formation and the derivation of vulnerability curves

    Detecting and Quantifying Xylem Embolism by Synchrotron-Based X-Ray Micro-CT

    No full text
    The vulnerability to xylem embolism is a key trait underlying species-specific drought tolerance of plants, and hence is critical for screening climate-resilient crops and understanding vegetation responses to drought and heat waves. Yet, accurate determination of embolism in plant's xylem is challenging, because most traditional hydraulic techniques are destructive and prone to artefacts. Hence, direct and in vivo synchrotron-based X-ray micro-CT observation of xylem conduits has emerged as a key reference technique for accurate quantification of vulnerability to xylem embolism. Micro-CT is nowadays a fundamental tool for studies of plant hydraulic architecture, and this chapter describes the fundamentals of acquisition and processing of micro-CT images of plant xylem
    corecore