39 research outputs found

    Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152656/1/all13921.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152656/2/all13921_am.pd

    Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities

    Get PDF
    Citation: Erban, T., Klimov, P. B., Smrz, J., Phillips, T. W., Nesvorna, M., Kopecky, J., & Hubert, J. (2016). Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities. Frontiers in Microbiology, 7, 19. doi:10.3389/fmich.2015.01046Background: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T putrescentiae and one mixed population of T putrescentiae and T fanetzhangorum collected from different habitats. Material: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. Results: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardiniurn (five populations), Bartonella-like (five populations), Blattabacteriurn-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacteriurn. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia infested populations. Conclusion: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea like in the eggs of T putrescentiae indicates mother to offspring (vertical) transmission. Results of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T putrescentiae

    Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets

    Get PDF
    Background:Tyrophagus putrescentiae is a ubiquitous mite species in soil, stored products and house dust and infests food and causes allergies in people. T. putrescentiae populations harbor different bacterial communities, including intracellular symbionts and gut bacteria. The spread of microorganisms via the fecal pellets of T. putrescentiae is a possibility that has not been studied in detail but may be an important means by which gut bacteria colonize subsequent generations of mites. Feces in soil may be a vector for the spread of microorganisms.Methods: Extracts from used mite culture medium (i.e., residual food, mite feces, and dead mite bodies) were used as a source of feces-inhabiting microorganisms as food for the mites. Two T. putrescentiae populations (L and P) were used for experiments, and they hosted the intracellular bacteria Cardinium and Wolbachia, respectively. The effects of the fecal fraction on respiration in a mite microcosm, mite nutrient contents, population growth and microbiome composition were evaluated.Results: Feces from the P population comprised more than 90% Bartonella-like sequences. Feces from the L population feces hosted Staphylococcus, Virgibacillus, Brevibacterium, Enterobacteriaceae, and Bacillus. The mites from the P population, but not the L population, exhibited increased bacterial respiration in the microcosms in comparison to no-mite controls. Both L- and P-feces extracts had an inhibitory effect on the respiration of the microcosms, indicating antagonistic interactions within feces-associated bacteria. The mite microbiomes were resistant to the acquisition of new bacterial species from the feces, but their bacterial profiles were affected. Feeding of P mites on P-feces-enriched diets resulted in an increase in Bartonella abundance from 6 to 20% of the total bacterial sequences and a decrease in Bacillus abundance. The population growth was fivefold accelerated on P-feces extracts in comparison to the control.Conclusion: The mite microbiome, to a certain extent, resists the acquisition of new bacteria when mites are fed on feces of the same species. However, a Bartonella-like bacteria-feces-enriched diet seems to be beneficial for mite populations with symbiotic Bartonella-like bacteria. Coprophagy on the feces of its own population may be a mechanism of bacterial acquisition in T. putrescentiae

    Determination of pH in Regions of the Midguts of Acaridid Mites

    Get PDF
    The pH of the guts of mites strongly affects their digestive processes. This study was carried out to determine the pH in the guts of 12 species of stored product and house dust mites. Eighteen pH indicators were chosen and offered to the mites in the feeding biotest. Based on the color changes of the indicators, the gut contents of acaridid mites were determined to be within a pH range of 4 to neutral. The gut contents showed a gradient in pH from the anterior to the posterior part. The anterior midgut (ventriculus and caeca) of most species had a pH ranging from 4.5 to 5, or slightly more alkaline for most of the species, while the middle midgut (intercolon/colon) had a pH of 5 to 6. Finally, the pH of the posterior midgut (postcolon) was between 5.5 and 7. Except for Dermatophagoides spp., no remarkable differences in the pH of the gut were observed among the tested species. Dermatophagoides spp. had a more acidic anterior midgut (a pH of 4 to 5) and colon (a pH of 5) with postcolon (a pH of below 6). The results characterizing in vivo conditions in the mite gut offer useful information to study the activity of mite digestive enzymes including their inhibitors and gut microflora

    MassIVE MSV000092678 - Proteome of 3day bee affected by Varroa with DWV

    No full text

    Nano LC ESI-MS/MS-identified proteins after purification from <i>Oryctogalus cuniculus</i> hind muscle.

    No full text
    <p>Nano LC ESI-MS/MS-identified proteins after purification from <i>Oryctogalus cuniculus</i> hind muscle.</p
    corecore