66 research outputs found

    Identifiers for structural warnings of malfunction in power grid networks

    Get PDF
    Although its uninterrupted supply is essential for everyday life, the electricity occasionally experiences disruptions and outages. The work presented in the current paper aims to initiate the research to design a strategy based on advanced approaches of algebraic topology to prevent such malfunctions in a power grid network. Simplicial complexes are constructed to identify higher-order structures embedded in a network and, alongside a new algorithm for identifying delegates of the simplicial complex, are intended to pinpoint each element of the power grid network to its natural layer. Results of this methodology for analysis of a power grid network can single out its elements that are at risk to cause cascade problems which can result in unintentional islanding and blackouts. Further development of the outcomes of research can find implementation in the algorithms of the energy informatics research applications

    Modelling of flue gas desulfurization process by sorbent injection into the pulverized coal-fired utility boiler furnace

    Get PDF
    Environmental problems during energy conversion from coal into electric power are of great importance and must be addressed as such. Before undertaking measures to improve existing utility boilers, or during planning and building new plants, detailed analysis are required, considering both techno-economic and the environmental issues. During the middle of the last century a rapid development of computers started, and at the same time computers became affordable and available to the end user. Thus, the 21st century becomes the era that will be marked by significant changes in computer structure, possibilities and use. Advances in computer development allowed for improvement of the computational methods in mechanical engineering and in other fields as well. Process control and plant design with the aid of computers are becoming everyday task and allow dealing with engineering problems that have previously been unsolvable and required empirical approach. One of the major contributors to environmental pollution is the emission of pollutants from large stationary sources, that is, more precisely, from the pulverized coal powered utility steam boilers. The subject of research in the dissertation is numerical modelling of complex processes in utility boiler furnace during direct injection of pulverized calcium-based sorbent (limestone, or lime) into the furnace for sulfur oxides reduction, with the model development, as well as numerical analysis and optimization of the processes as the primary goals. Process is well known in theory, however, as it can be found in the literature, the sorbent behavior during the furnace sorbent injection is still not understood enough, and thus on the full-scale plants the efficiency of the process significantly varies. Problems and the causes of significant drops in efficiency can be attributed to the poor process control. Numerical modeling allows for investigation of furnace behavior during various configurations of the sorbent injection process, before any changes are made at the plant itself, which is of primary importance during analysis and decision making about directions of the changes and upgrades of the existing plants, and can give good ideas about the design of the new plants. Developed software for three-dimensional furnace calculation includes differential model of flow and heat transfer processes, combustion reactions model, nitrogen oxides formation and destruction reactions model, and two selected and optimized models of sorbent particle reactions with sulfur oxides from furnace gasses, applied within the comprehensive model of furnace processes. A k-Ξ΅ model is used for turbulence modeling, while the radiative heat exchange is modelled by using the six fluxes model. Two-phase gas-particle turbulent flow is modeled with Euler-Lagrangian approach. Interaction between gas phase and particles is treated by PSI-Cell method, with transport equations for gas phase having source terms that takes into account the particles influence. Significance of development and application of such a software for calculations is mostly notable in possibility to perceive and analyze processes inside of the furnace which cannot be analyzed and (the entire system cannot be) predicted by other means. Understanding the behavior of the boiler furnace during certain operation regimes, with the use of various fuels, as well as under modifications such as the furnace sorbent injection is of great importance, and represents a prerequisite for achieving efficient, reliable and environmentally friendly boiler operation with compromises between the three, important but to some extent opposed conditions. Particular attention is devoted to the modeling of pulverized sorbent furnace injection, regarding that a primary goal is investigation of possibility to reduce sulfur oxides emission by means of direct sorbent injection into the boiler furnace. Problem is approached through several phases, starting with the analysis of selected models of calcination, sintering and sulfation reactions, their stability and behavior in two-dimensional simulated reactors with focus on comparison with available experimental results in order to validate the models implementation. In further study, models are implemented in three-dimensional numerical code for simulation of in-furnace processes, with particular interest to observe, beside the sorbent influence on sulfur oxides content, the influence it has on the furnace exiting gas temperature and other relevant process parameters in the furnace. During the research, a complex numerical study of the furnace sorbent injection possibilities and accompanying phenomena was performed. Sorbent injection was simulated through the burner tiers, and through the special injection ports above the burner tiers, individually and in combination. Process was analyzed for several fuels with different heating values and varied sulfur content, and various the impacts of different operation regimes and combustion configurations on the gaseous combustion products at the furnace exit were shown. Influence of wide range of desulfurization process parameters was considered, such as: sorbent injection position and particle distribution, particle temperature history and residence time, local gas temperature within the furnace, calcium – sulfur molar ratio, local sulfur oxides concentration, local oxygen concentration, etc. Conclusions were drawn considering possibilities for direct sorbent injection into the pulverized coal fired boiler furnace, as well as suggestions were given on optimal furnace sorbent injection configuration, depending on the boiler operation parameters. The developed software includes a user interface for easier data input for the case-study boiler furnace, allowing for easier boiler analysis, and provides engineering staff with a tool for an efficient software control, with the purpose of considering and analyzing better the furnace sorbent injection technology and its potential applications in the utility boiler furnaces.Π•ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°ΡšΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ садрТанС Ρƒ ΡƒΠ³Ρ™Ρƒ Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ су ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΈ ΠΏΠΎΡΠ²Π΅Ρ›ΡƒΡ˜Π΅ ΠΈΠΌ сС посСбна паТња. ΠŸΡ€Π΅ ΠΏΡ€Π΅Π΄ΡƒΠ·ΠΈΠΌΠ°ΡšΠ° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΈΡ… ΠΌΠ΅Ρ€Π° Π½Π° ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ°, ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ° ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ јС извСсти Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΊΠ°ΠΊΠΎ Ρ‚Π΅Ρ…Π½ΠΎ-СкономскС, Ρ‚Π°ΠΊΠΎ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρƒ срСдину. Π‘Ρ€Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ Π²Π΅ΠΊΠ° ΠΎΡ‚ΠΏΠΎΡ‡Π΅ΠΎ јС ΡƒΠ±Ρ€Π·Π°Π½ Ρ€Π°Π·Π²ΠΎΡ˜ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, ΡƒΠ· истоврСмСно ΠΏΠΎΡ˜Π΅Ρ„Ρ‚ΠΈΡšΠ΅ΡšΠ΅ ΠΈ доступност ΠΊΡ€Π°Ρ˜ΡšΠ΅ΠΌ кориснику, a 21. Π²Π΅ΠΊ јС столСћС којС Ρ›Π΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΡ‚ΠΈ ΠΈ Π²Π΅Ρ› ΠΎΠ±Π΅Π»Π΅ΠΆΠ°Π²Π°Ρ˜Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ структури Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, могућностима ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ. НапрСдак Ρƒ Ρ€Π°Π·Π²ΠΎΡ˜Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΎΠΌΠΎΠ³ΡƒΡ›ΠΈΠΎ јС Ρ€Π°Π·Π²ΠΎΡ˜ Π½ΠΎΠ²ΠΈΡ… прорачунских ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρƒ ΠΌΠ°ΡˆΠΈΠ½ΡΡ‚Π²Ρƒ ΠΊΠ°ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ областима. Π’ΠΎΡ’Π΅ΡšΠ΅ процСса ΠΈ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ΅ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° ΡƒΠ· ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΏΠΎΡΡ‚Π°Ρ˜Ρƒ наша свакоднСвница Ρƒ којој јС ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ који су Ρ€Π°Π½ΠΈΡ˜Π΅ Π±ΠΈΠ»ΠΈ Π½Π΅Ρ€Π΅ΡˆΠΈΠ²ΠΈ ΠΈ приступало ΠΈΠΌ сС искључиво Π΅ΠΌΠΏΠΈΡ€ΠΈΡ˜ΡΠΊΠΈ. ЈСдан ΠΎΠ΄ ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρ˜Π΅ΡΡ‚Π΅ ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ СмисијС ΡˆΡ‚Π΅Ρ‚Π½ΠΈΡ… јСдињСња ΠΈΠ· стационарних ΠΈΠ·Π²ΠΎΡ€Π° Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π°, односно, Ρƒ нашСм ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΈΠ· СнСргСтских ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π° Π½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈ ΠΏΡ€Π°Ρ…. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ° Ρƒ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Ρ˜Π΅ΡΡ‚Π΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ слоТСних процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΏΡ€ΠΈ ΡƒΠ½ΠΎΡˆΠ΅ΡšΡƒ ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Π½Π° Π±Π°Π·ΠΈ ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° (ΠΊΡ€Π΅Ρ‡ΡšΠ°ΠΊΠ°, ΠΈΠ»ΠΈ ΠΊΡ€Π΅Ρ‡Π°) Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ Ρ€Π°Π΄ΠΈ смањСња СмисијС оксида сумпора, Π° Ρ†ΠΈΡ™Π΅Π²ΠΈ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ су Ρ€Π°Π·Π²ΠΎΡ˜ ΠΌΠΎΠ΄Π΅Π»Π°, ΠΊΠ°ΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΎΠ²ΠΈΡ… процСса. ΠŸΡ€ΠΎΡ†Π΅Ρ јС ΠΏΠΎΠ·Π½Π°Ρ‚, Π°Π»ΠΈ, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ сС ΠΌΠΎΠΆΠ΅ ΠΏΡ€ΠΎΠ½Π°Ρ›ΠΈ Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ, понашањС сорбСнта ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΈ Π΄Π°Ρ™Π΅ Π½Π΅Π΄ΠΎΠ²ΠΎΡ™Π½ΠΎ ΠΏΠΎΠ·Π½Π°Ρ‚ процСс, ΠΈ Π½Π° стварним ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ° Сфикасност процСса Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π²Π°Ρ€ΠΈΡ€Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° истС ΠΈΠ»ΠΈ сличнС снагС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΈ ΡƒΠ·Ρ€ΠΎΠΊΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ… Ρ€Π°Π·Π»ΠΈΠΊΠ° Ρƒ Сфикасности ΠΌΠΎΠ³ΡƒΡ›Π΅ јС Ρ‚Ρ€Π°ΠΆΠΈΡ‚ΠΈ Ρƒ лошСм Π²ΠΎΡ’Π΅ΡšΡƒ процСса. НумСричко ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Π½Π°ΠΌ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π΄Π° испитамо понашањС Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° процСса Π²Π΅Π·Π°Π½ΠΈΡ… Π·Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡ‚Π΅, ΠΏΡ€Π΅ Π±ΠΈΠ»ΠΎ ΠΊΠ°ΠΊΠ²ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½Π° Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›Π΅ΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΡƒ, ΡˆΡ‚ΠΎ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π°ΠΌΠ° ΠΈ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ ΠΎ ΠΏΡ€Π°Π²Ρ†ΠΈΠΌΠ° Ρƒ којима Ρ‚Ρ€Π΅Π±Π° Π²Ρ€ΡˆΠΈΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅ Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ°, односно Π΄Π°Ρ‚ΠΈ смСрницС ΠΏΡ€ΠΈ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ Π½ΠΎΠ²ΠΈΡ…. РазвијСн јС софтвСр Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ процСса Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ котловском Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ који ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΡ‚Ρ€ΡƒΡ˜Π½ΠΎΡ‚Π΅Ρ€ΠΌΠΈΡ‡ΠΊΠΈΡ… процСса, ΠΌΠΎΠ΄Π΅Π» Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ°, Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° Π½Π°ΡΡ‚Π°Ρ˜Π°ΡšΠ° ΠΈ Π΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ˜Π΅ оксида Π°Π·ΠΎΡ‚Π°, ΠΈ Π΄Π²Π° ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° чСстица сорбСнта са оксидима сумпора ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΠ½ΠΈΡ… гасова, ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Ρƒ слоТСном ΠΌΠΎΠ΄Π΅Π»Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π°Π²Π° сС οΏ½ βˆ’ οΏ½ ΠΌΠΎΠ΄Π΅Π» Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ†ΠΈΡ˜Π΅, Π΄ΠΎΠΊ сС Π·Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Ρ€Π°Π΄ΠΈΡ˜Π°Ρ†ΠΈΠΎΠ½Π΅ Ρ€Π°Π·ΠΌΠ΅Π½Π΅ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π΅ користи ΠΌΠΎΠ΄Π΅Π» ΡˆΠ΅ΡΡ‚ флуксСва. Π”Π²ΠΎΡ„Π°Π·Π½ΠΈ гас-чСстицС Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΈ Ρ‚ΠΎΠΊ сС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ EulerLagrange-ΠΎΠ²ΠΎΠ³ поступка. Π˜Π½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ гасовитС Ρ„Π°Π·Π΅ ΠΈ чСстица сС Ρ‚Ρ€Π΅Ρ‚ΠΈΡ€Π° ΠΏΠΎΠΌΠΎΡ›Ρƒ PSI-Cell ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅, односно Ρƒ транспортним Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π°ΠΌΠ° Π·Π° гасну Ρ„Π°Π·Ρƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ ΠΈΠ·Π²ΠΎΡ€Π½ΠΈ Ρ‡Π»Π°Π½ΠΎΠ²ΠΈ којима сС ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ чСстица. Π—Π½Π°Ρ‡Π°Ρ˜ Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ΠΎΠ²Π°ΠΊΠ²ΠΎΠ³ софтвСра Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ сС ΠΎΠ³Π»Π΅Π΄Π° Ρƒ могућности саглСдавања ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ процСса ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π»ΠΎΠΆΠΈΡˆΡ‚Π° којС Π½Π° Π΄Ρ€ΡƒΠ³ΠΈ Π½Π°Ρ‡ΠΈΠ½ нијС ΠΌΠΎΠ³ΡƒΡ›Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Ρ‚ΠΈ Π½ΠΈΡ‚ΠΈ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Ρ‚ΠΈ понашањС систСма Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΈΡ˜ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°. ПознавањС понашања котловског Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ Ρ€Π°Π΄Π½ΠΈΠΌ Ρ€Π΅ΠΆΠΈΠΌΠΈΠΌΠ°, ΡƒΠ· ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… Π³ΠΎΡ€ΠΈΠ²Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΏΠΎΠΏΡƒΡ‚ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π°, ΠΈ прСдставља прСдуслов Π·Π° ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ΅ Сфикасног, ΠΏΠΎΡƒΠ·Π΄Π°Π½ΠΎΠ³ ΠΈ Сколошки ΠΏΡ€ΠΈΡ…Π²Π°Ρ‚Ρ™ΠΈΠ²ΠΎΠ³ Ρ€Π°Π΄Π° ΡƒΠ· компромисС који ΠΈΠ· Ρ‚Π° Ρ‚Ρ€ΠΈ Π±ΠΈΡ‚Π½Π°, Π°Π»ΠΈ Π΄ΠΎΠ½Π΅ΠΊΠ»Π΅ супротстављСна Π·Π°Ρ…Ρ‚Π΅Π²Π° ΠΏΡ€ΠΎΠΈΠ·ΠΈΠ»Π°Π·Π΅. ОвдС јС посСбна паТња посвСћСна ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΡƒ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π΄Π° јС Π³Π»Π°Π²Π½ΠΈ Ρ†ΠΈΡ™ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π° могућности смањСња СмисијС оксида сумпора ΠΏΠΎΠΌΠΎΡ›Ρƒ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎΠ³ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅. Π Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° приступљСно јС ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΏΠ΅, ΠΏΠΎΡ‡Π΅Π² ΠΎΠ΄ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ΄Π°Π±Ρ€Π°Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΠΊΠ°Π»Ρ†ΠΈΠ½Π°Ρ†ΠΈΡ˜Π΅, ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΠ° ΠΈ ΡΡƒΠ»Ρ„Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ чСстицС сорбСнта, ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΡšΠΈΡ…ΠΎΠ²Π΅ стабилности ΠΈ понашања Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΊΠ°Π½Π°Π»ΠΈΠΌΠ° којима сС ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΈ ΠΈ Ρƒ којима јС посСбно посвСћСна паТња ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° са доступним СкспСримСнталним Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ° Ρ€Π°Π΄ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡ˜Π΅ ΠΌΠΎΠ΄Π΅Π»Π°. НадаљС су ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ΠΈ Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎΠΌ ΠΊΠΎΠ΄Ρƒ Π·Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΈ Ρ‚Ρƒ јС посСбно интСрСсантно Π±ΠΈΠ»ΠΎ посматрати, ΠΏΠΎΡ€Π΅Π΄ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° сорбСнта Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ оксида сумпора, ΠΈ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΈΠ·Π»Π°Π·Π½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ Π΄Ρ€ΡƒΠ³Π΅ Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π΅ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ Ρ‚ΠΎΠΊΡƒ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π° јС ΠΎΠ±ΠΈΠΌΠ½Π° Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° могућности ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΈ ΠΏΡ€Π°Ρ‚Π΅Ρ›ΠΈΡ… појава. Π‘ΠΈΠΌΡƒΠ»ΠΈΡ€Π°Π½ΠΎ јС ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΆΠ΅ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΊΠ°ΠΎ ΠΈ ΠΊΡ€ΠΎΠ· посСбнС ΠΎΡ‚Π²ΠΎΡ€Π΅ ΠΈΠ·Π½Π°Π΄ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΎ ΠΈ Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ. АнализиранС су могућности процСса са вишС Π³ΠΎΡ€ΠΈΠ²Π°, са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π½ΠΈΠΌ ΠΌΠΎΡ›ΠΈΠΌΠ° ΠΈ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ΠΈΠΌΠ° сумпора ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ су ΡƒΡ‚ΠΈΡ†Π°Ρ˜ΠΈ којС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ Ρ€Π°Π΄Π½ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΈ ΠΈ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡ˜Π΅ ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ° ΠΈΠΌΠ°Ρ˜Ρƒ Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜Π΅ гасовитих ΠΏΡ€ΠΎΠ΄ΡƒΠΊΠ°Ρ‚Π° Π½Π° ΠΈΠ·Π»Π°Π·Ρƒ ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΡ‚Π°. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ јС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° процСса ΠΎΠ΄ΡΡƒΠΌΠΏΠΎΡ€Π°Π²Π°ΡšΠ°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су: мСсто ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΠΈ Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° чСстица сорбСнта, тСмпСратурска ΠΈΡΡ‚ΠΎΡ€ΠΈΡ˜Π° ΠΈ Π²Ρ€Π΅ΠΌΠ΅ Π±ΠΎΡ€Π°Π²ΠΊΠ° чСстица Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, Π»ΠΎΠΊΠ°Π»Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° гаса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΌΠΎΠ»Π°Ρ€Π½ΠΈ однос ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈ сумпора, Π»ΠΎΠΊΠ°Π»Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° оксида сумпора ΠΈ кисСоника Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΈΡ‚Π΄. ИзвСдСни су Π·Π°ΠΊΡ™ΡƒΡ‡Ρ†ΠΈ ΠΎ могућностима ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΎΠ½Π°Π»Π°ΠΆΠ΅ΡšΡƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π½Π°Ρ‡ΠΈΠ½Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ зависности ΠΎΠ΄ Ρ€Π°Π΄Π½ΠΎΠ³ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΊΠΎΡ‚Π»Π°. РазвијСни софтвСр јС ΠΎΠΏΡ€Π΅ΠΌΡ™Π΅Π½ корисничким ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ˜ΡΠΎΠΌ који ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎ задавањС ΡƒΠ»Π°Π·Π½ΠΈΡ… ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Π·Π° ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅, ΡˆΡ‚ΠΎ олакшава Π°Π½Π°Π»ΠΈΠ·Π΅, Π° ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΈ ΠΈΠ½ΠΆΠ΅ΡšΠ΅Ρ€ΡΠΊΠΎΠΌ ΠΊΠ°Π΄Ρ€Ρƒ олакшан Ρ€Π°Π΄ са софтвСром, Π° Ρƒ Ρ†ΠΈΡ™Ρƒ саглСдавања ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠ³ процСса ΠΊΠ°ΠΎ ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ њСнС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ Π½Π° Π»ΠΎΠΆΠΈΡˆΡ‚ΠΈΠΌΠ° ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π°

    Modelling of flue gas desulfurization process by sorbent injection into the pulverized coal-fired utility boiler furnace

    Get PDF
    Environmental problems during energy conversion from coal into electric power are of great importance and must be addressed as such. Before undertaking measures to improve existing utility boilers, or during planning and building new plants, detailed analysis are required, considering both techno-economic and the environmental issues. During the middle of the last century a rapid development of computers started, and at the same time computers became affordable and available to the end user. Thus, the 21st century becomes the era that will be marked by significant changes in computer structure, possibilities and use. Advances in computer development allowed for improvement of the computational methods in mechanical engineering and in other fields as well. Process control and plant design with the aid of computers are becoming everyday task and allow dealing with engineering problems that have previously been unsolvable and required empirical approach. One of the major contributors to environmental pollution is the emission of pollutants from large stationary sources, that is, more precisely, from the pulverized coal powered utility steam boilers. The subject of research in the dissertation is numerical modelling of complex processes in utility boiler furnace during direct injection of pulverized calcium-based sorbent (limestone, or lime) into the furnace for sulfur oxides reduction, with the model development, as well as numerical analysis and optimization of the processes as the primary goals. Process is well known in theory, however, as it can be found in the literature, the sorbent behavior during the furnace sorbent injection is still not understood enough, and thus on the full-scale plants the efficiency of the process significantly varies. Problems and the causes of significant drops in efficiency can be attributed to the poor process control. Numerical modeling allows for investigation of furnace behavior during various configurations of the sorbent injection process, before any changes are made at the plant itself, which is of primary importance during analysis and decision making about directions of the changes and upgrades of the existing plants, and can give good ideas about the design of the new plants. Developed software for three-dimensional furnace calculation includes differential model of flow and heat transfer processes, combustion reactions model, nitrogen oxides formation and destruction reactions model, and two selected and optimized models of sorbent particle reactions with sulfur oxides from furnace gasses, applied within the comprehensive model of furnace processes. A k-Ξ΅ model is used for turbulence modeling, while the radiative heat exchange is modelled by using the six fluxes model. Two-phase gas-particle turbulent flow is modeled with Euler-Lagrangian approach. Interaction between gas phase and particles is treated by PSI-Cell method, with transport equations for gas phase having source terms that takes into account the particles influence. Significance of development and application of such a software for calculations is mostly notable in possibility to perceive and analyze processes inside of the furnace which cannot be analyzed and (the entire system cannot be) predicted by other means. Understanding the behavior of the boiler furnace during certain operation regimes, with the use of various fuels, as well as under modifications such as the furnace sorbent injection is of great importance, and represents a prerequisite for achieving efficient, reliable and environmentally friendly boiler operation with compromises between the three, important but to some extent opposed conditions. Particular attention is devoted to the modeling of pulverized sorbent furnace injection, regarding that a primary goal is investigation of possibility to reduce sulfur oxides emission by means of direct sorbent injection into the boiler furnace. Problem is approached through several phases, starting with the analysis of selected models of calcination, sintering and sulfation reactions, their stability and behavior in two-dimensional simulated reactors with focus on comparison with available experimental results in order to validate the models implementation. In further study, models are implemented in three-dimensional numerical code for simulation of in-furnace processes, with particular interest to observe, beside the sorbent influence on sulfur oxides content, the influence it has on the furnace exiting gas temperature and other relevant process parameters in the furnace. During the research, a complex numerical study of the furnace sorbent injection possibilities and accompanying phenomena was performed. Sorbent injection was simulated through the burner tiers, and through the special injection ports above the burner tiers, individually and in combination. Process was analyzed for several fuels with different heating values and varied sulfur content, and various the impacts of different operation regimes and combustion configurations on the gaseous combustion products at the furnace exit were shown. Influence of wide range of desulfurization process parameters was considered, such as: sorbent injection position and particle distribution, particle temperature history and residence time, local gas temperature within the furnace, calcium – sulfur molar ratio, local sulfur oxides concentration, local oxygen concentration, etc. Conclusions were drawn considering possibilities for direct sorbent injection into the pulverized coal fired boiler furnace, as well as suggestions were given on optimal furnace sorbent injection configuration, depending on the boiler operation parameters. The developed software includes a user interface for easier data input for the case-study boiler furnace, allowing for easier boiler analysis, and provides engineering staff with a tool for an efficient software control, with the purpose of considering and analyzing better the furnace sorbent injection technology and its potential applications in the utility boiler furnaces.Π•ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°ΡšΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ садрТанС Ρƒ ΡƒΠ³Ρ™Ρƒ Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ су ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΈ ΠΏΠΎΡΠ²Π΅Ρ›ΡƒΡ˜Π΅ ΠΈΠΌ сС посСбна паТња. ΠŸΡ€Π΅ ΠΏΡ€Π΅Π΄ΡƒΠ·ΠΈΠΌΠ°ΡšΠ° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΈΡ… ΠΌΠ΅Ρ€Π° Π½Π° ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ°, ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ° ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ јС извСсти Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΊΠ°ΠΊΠΎ Ρ‚Π΅Ρ…Π½ΠΎ-СкономскС, Ρ‚Π°ΠΊΠΎ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρƒ срСдину. Π‘Ρ€Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ Π²Π΅ΠΊΠ° ΠΎΡ‚ΠΏΠΎΡ‡Π΅ΠΎ јС ΡƒΠ±Ρ€Π·Π°Π½ Ρ€Π°Π·Π²ΠΎΡ˜ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, ΡƒΠ· истоврСмСно ΠΏΠΎΡ˜Π΅Ρ„Ρ‚ΠΈΡšΠ΅ΡšΠ΅ ΠΈ доступност ΠΊΡ€Π°Ρ˜ΡšΠ΅ΠΌ кориснику, a 21. Π²Π΅ΠΊ јС столСћС којС Ρ›Π΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΡ‚ΠΈ ΠΈ Π²Π΅Ρ› ΠΎΠ±Π΅Π»Π΅ΠΆΠ°Π²Π°Ρ˜Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ структури Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, могућностима ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ. НапрСдак Ρƒ Ρ€Π°Π·Π²ΠΎΡ˜Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΎΠΌΠΎΠ³ΡƒΡ›ΠΈΠΎ јС Ρ€Π°Π·Π²ΠΎΡ˜ Π½ΠΎΠ²ΠΈΡ… прорачунских ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρƒ ΠΌΠ°ΡˆΠΈΠ½ΡΡ‚Π²Ρƒ ΠΊΠ°ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ областима. Π’ΠΎΡ’Π΅ΡšΠ΅ процСса ΠΈ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ΅ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° ΡƒΠ· ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΏΠΎΡΡ‚Π°Ρ˜Ρƒ наша свакоднСвница Ρƒ којој јС ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ који су Ρ€Π°Π½ΠΈΡ˜Π΅ Π±ΠΈΠ»ΠΈ Π½Π΅Ρ€Π΅ΡˆΠΈΠ²ΠΈ ΠΈ приступало ΠΈΠΌ сС искључиво Π΅ΠΌΠΏΠΈΡ€ΠΈΡ˜ΡΠΊΠΈ. ЈСдан ΠΎΠ΄ ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρ˜Π΅ΡΡ‚Π΅ ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ СмисијС ΡˆΡ‚Π΅Ρ‚Π½ΠΈΡ… јСдињСња ΠΈΠ· стационарних ΠΈΠ·Π²ΠΎΡ€Π° Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π°, односно, Ρƒ нашСм ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΈΠ· СнСргСтских ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π° Π½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈ ΠΏΡ€Π°Ρ…. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ° Ρƒ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Ρ˜Π΅ΡΡ‚Π΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ слоТСних процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΏΡ€ΠΈ ΡƒΠ½ΠΎΡˆΠ΅ΡšΡƒ ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Π½Π° Π±Π°Π·ΠΈ ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° (ΠΊΡ€Π΅Ρ‡ΡšΠ°ΠΊΠ°, ΠΈΠ»ΠΈ ΠΊΡ€Π΅Ρ‡Π°) Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ Ρ€Π°Π΄ΠΈ смањСња СмисијС оксида сумпора, Π° Ρ†ΠΈΡ™Π΅Π²ΠΈ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ су Ρ€Π°Π·Π²ΠΎΡ˜ ΠΌΠΎΠ΄Π΅Π»Π°, ΠΊΠ°ΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΎΠ²ΠΈΡ… процСса. ΠŸΡ€ΠΎΡ†Π΅Ρ јС ΠΏΠΎΠ·Π½Π°Ρ‚, Π°Π»ΠΈ, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ сС ΠΌΠΎΠΆΠ΅ ΠΏΡ€ΠΎΠ½Π°Ρ›ΠΈ Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ, понашањС сорбСнта ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΈ Π΄Π°Ρ™Π΅ Π½Π΅Π΄ΠΎΠ²ΠΎΡ™Π½ΠΎ ΠΏΠΎΠ·Π½Π°Ρ‚ процСс, ΠΈ Π½Π° стварним ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ° Сфикасност процСса Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π²Π°Ρ€ΠΈΡ€Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° истС ΠΈΠ»ΠΈ сличнС снагС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΈ ΡƒΠ·Ρ€ΠΎΠΊΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ… Ρ€Π°Π·Π»ΠΈΠΊΠ° Ρƒ Сфикасности ΠΌΠΎΠ³ΡƒΡ›Π΅ јС Ρ‚Ρ€Π°ΠΆΠΈΡ‚ΠΈ Ρƒ лошСм Π²ΠΎΡ’Π΅ΡšΡƒ процСса. НумСричко ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Π½Π°ΠΌ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π΄Π° испитамо понашањС Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° процСса Π²Π΅Π·Π°Π½ΠΈΡ… Π·Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡ‚Π΅, ΠΏΡ€Π΅ Π±ΠΈΠ»ΠΎ ΠΊΠ°ΠΊΠ²ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½Π° Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›Π΅ΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΡƒ, ΡˆΡ‚ΠΎ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π°ΠΌΠ° ΠΈ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ ΠΎ ΠΏΡ€Π°Π²Ρ†ΠΈΠΌΠ° Ρƒ којима Ρ‚Ρ€Π΅Π±Π° Π²Ρ€ΡˆΠΈΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅ Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ°, односно Π΄Π°Ρ‚ΠΈ смСрницС ΠΏΡ€ΠΈ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ Π½ΠΎΠ²ΠΈΡ…. РазвијСн јС софтвСр Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ процСса Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ котловском Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ који ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΡ‚Ρ€ΡƒΡ˜Π½ΠΎΡ‚Π΅Ρ€ΠΌΠΈΡ‡ΠΊΠΈΡ… процСса, ΠΌΠΎΠ΄Π΅Π» Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ°, Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° Π½Π°ΡΡ‚Π°Ρ˜Π°ΡšΠ° ΠΈ Π΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ˜Π΅ оксида Π°Π·ΠΎΡ‚Π°, ΠΈ Π΄Π²Π° ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° чСстица сорбСнта са оксидима сумпора ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΠ½ΠΈΡ… гасова, ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Ρƒ слоТСном ΠΌΠΎΠ΄Π΅Π»Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π°Π²Π° сС οΏ½ βˆ’ οΏ½ ΠΌΠΎΠ΄Π΅Π» Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ†ΠΈΡ˜Π΅, Π΄ΠΎΠΊ сС Π·Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Ρ€Π°Π΄ΠΈΡ˜Π°Ρ†ΠΈΠΎΠ½Π΅ Ρ€Π°Π·ΠΌΠ΅Π½Π΅ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π΅ користи ΠΌΠΎΠ΄Π΅Π» ΡˆΠ΅ΡΡ‚ флуксСва. Π”Π²ΠΎΡ„Π°Π·Π½ΠΈ гас-чСстицС Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΈ Ρ‚ΠΎΠΊ сС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ EulerLagrange-ΠΎΠ²ΠΎΠ³ поступка. Π˜Π½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ гасовитС Ρ„Π°Π·Π΅ ΠΈ чСстица сС Ρ‚Ρ€Π΅Ρ‚ΠΈΡ€Π° ΠΏΠΎΠΌΠΎΡ›Ρƒ PSI-Cell ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅, односно Ρƒ транспортним Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π°ΠΌΠ° Π·Π° гасну Ρ„Π°Π·Ρƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ ΠΈΠ·Π²ΠΎΡ€Π½ΠΈ Ρ‡Π»Π°Π½ΠΎΠ²ΠΈ којима сС ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ чСстица. Π—Π½Π°Ρ‡Π°Ρ˜ Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ΠΎΠ²Π°ΠΊΠ²ΠΎΠ³ софтвСра Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ сС ΠΎΠ³Π»Π΅Π΄Π° Ρƒ могућности саглСдавања ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ процСса ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π»ΠΎΠΆΠΈΡˆΡ‚Π° којС Π½Π° Π΄Ρ€ΡƒΠ³ΠΈ Π½Π°Ρ‡ΠΈΠ½ нијС ΠΌΠΎΠ³ΡƒΡ›Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Ρ‚ΠΈ Π½ΠΈΡ‚ΠΈ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Ρ‚ΠΈ понашањС систСма Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΈΡ˜ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°. ПознавањС понашања котловског Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ Ρ€Π°Π΄Π½ΠΈΠΌ Ρ€Π΅ΠΆΠΈΠΌΠΈΠΌΠ°, ΡƒΠ· ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… Π³ΠΎΡ€ΠΈΠ²Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΏΠΎΠΏΡƒΡ‚ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π°, ΠΈ прСдставља прСдуслов Π·Π° ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ΅ Сфикасног, ΠΏΠΎΡƒΠ·Π΄Π°Π½ΠΎΠ³ ΠΈ Сколошки ΠΏΡ€ΠΈΡ…Π²Π°Ρ‚Ρ™ΠΈΠ²ΠΎΠ³ Ρ€Π°Π΄Π° ΡƒΠ· компромисС који ΠΈΠ· Ρ‚Π° Ρ‚Ρ€ΠΈ Π±ΠΈΡ‚Π½Π°, Π°Π»ΠΈ Π΄ΠΎΠ½Π΅ΠΊΠ»Π΅ супротстављСна Π·Π°Ρ…Ρ‚Π΅Π²Π° ΠΏΡ€ΠΎΠΈΠ·ΠΈΠ»Π°Π·Π΅. ОвдС јС посСбна паТња посвСћСна ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΡƒ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π΄Π° јС Π³Π»Π°Π²Π½ΠΈ Ρ†ΠΈΡ™ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π° могућности смањСња СмисијС оксида сумпора ΠΏΠΎΠΌΠΎΡ›Ρƒ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎΠ³ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅. Π Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° приступљСно јС ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΏΠ΅, ΠΏΠΎΡ‡Π΅Π² ΠΎΠ΄ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ΄Π°Π±Ρ€Π°Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΠΊΠ°Π»Ρ†ΠΈΠ½Π°Ρ†ΠΈΡ˜Π΅, ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΠ° ΠΈ ΡΡƒΠ»Ρ„Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ чСстицС сорбСнта, ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΡšΠΈΡ…ΠΎΠ²Π΅ стабилности ΠΈ понашања Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΊΠ°Π½Π°Π»ΠΈΠΌΠ° којима сС ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΈ ΠΈ Ρƒ којима јС посСбно посвСћСна паТња ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° са доступним СкспСримСнталним Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ° Ρ€Π°Π΄ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡ˜Π΅ ΠΌΠΎΠ΄Π΅Π»Π°. НадаљС су ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ΠΈ Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎΠΌ ΠΊΠΎΠ΄Ρƒ Π·Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΈ Ρ‚Ρƒ јС посСбно интСрСсантно Π±ΠΈΠ»ΠΎ посматрати, ΠΏΠΎΡ€Π΅Π΄ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° сорбСнта Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ оксида сумпора, ΠΈ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΈΠ·Π»Π°Π·Π½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ Π΄Ρ€ΡƒΠ³Π΅ Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π΅ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ Ρ‚ΠΎΠΊΡƒ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π° јС ΠΎΠ±ΠΈΠΌΠ½Π° Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° могућности ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΈ ΠΏΡ€Π°Ρ‚Π΅Ρ›ΠΈΡ… појава. Π‘ΠΈΠΌΡƒΠ»ΠΈΡ€Π°Π½ΠΎ јС ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΆΠ΅ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΊΠ°ΠΎ ΠΈ ΠΊΡ€ΠΎΠ· посСбнС ΠΎΡ‚Π²ΠΎΡ€Π΅ ΠΈΠ·Π½Π°Π΄ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΎ ΠΈ Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ. АнализиранС су могућности процСса са вишС Π³ΠΎΡ€ΠΈΠ²Π°, са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π½ΠΈΠΌ ΠΌΠΎΡ›ΠΈΠΌΠ° ΠΈ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ΠΈΠΌΠ° сумпора ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ су ΡƒΡ‚ΠΈΡ†Π°Ρ˜ΠΈ којС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ Ρ€Π°Π΄Π½ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΈ ΠΈ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡ˜Π΅ ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ° ΠΈΠΌΠ°Ρ˜Ρƒ Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜Π΅ гасовитих ΠΏΡ€ΠΎΠ΄ΡƒΠΊΠ°Ρ‚Π° Π½Π° ΠΈΠ·Π»Π°Π·Ρƒ ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΡ‚Π°. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ јС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° процСса ΠΎΠ΄ΡΡƒΠΌΠΏΠΎΡ€Π°Π²Π°ΡšΠ°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су: мСсто ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΠΈ Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° чСстица сорбСнта, тСмпСратурска ΠΈΡΡ‚ΠΎΡ€ΠΈΡ˜Π° ΠΈ Π²Ρ€Π΅ΠΌΠ΅ Π±ΠΎΡ€Π°Π²ΠΊΠ° чСстица Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, Π»ΠΎΠΊΠ°Π»Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° гаса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΌΠΎΠ»Π°Ρ€Π½ΠΈ однос ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈ сумпора, Π»ΠΎΠΊΠ°Π»Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° оксида сумпора ΠΈ кисСоника Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΈΡ‚Π΄. ИзвСдСни су Π·Π°ΠΊΡ™ΡƒΡ‡Ρ†ΠΈ ΠΎ могућностима ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΎΠ½Π°Π»Π°ΠΆΠ΅ΡšΡƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π½Π°Ρ‡ΠΈΠ½Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ зависности ΠΎΠ΄ Ρ€Π°Π΄Π½ΠΎΠ³ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΊΠΎΡ‚Π»Π°. РазвијСни софтвСр јС ΠΎΠΏΡ€Π΅ΠΌΡ™Π΅Π½ корисничким ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ˜ΡΠΎΠΌ који ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎ задавањС ΡƒΠ»Π°Π·Π½ΠΈΡ… ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Π·Π° ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅, ΡˆΡ‚ΠΎ олакшава Π°Π½Π°Π»ΠΈΠ·Π΅, Π° ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΈ ΠΈΠ½ΠΆΠ΅ΡšΠ΅Ρ€ΡΠΊΠΎΠΌ ΠΊΠ°Π΄Ρ€Ρƒ олакшан Ρ€Π°Π΄ са софтвСром, Π° Ρƒ Ρ†ΠΈΡ™Ρƒ саглСдавања ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠ³ процСса ΠΊΠ°ΠΎ ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ њСнС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ Π½Π° Π»ΠΎΠΆΠΈΡˆΡ‚ΠΈΠΌΠ° ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π°

    Modeling of the reactions of a calcium-based sorbent with sulfur dioxide

    Get PDF
    A mathematical model of calcium sorbent reactions for the simulation of sulfur dioxide reduction from pulverized coal combustion flue gasses was developed, implemented within a numerical code and validated against available measurements under controlled conditions. The model attempts to resemble closely the reactions of calcination, sintering and sulfation occurring during the motion of the sorbent particles in the furnace. The sulfation was based on the partially sintered spheres model (PSSM), coupled with simulated particle calcination and sintering. The complex geometry of the particle was taken into account, with the assumption that it consists of spherical grains in contact with each other. Numerical simulations of drop down tube reactors were performed for both CaCO3 and Ca(OH)(2) sorbent particles and results were compared with experimental data available from the literature. The model of the sorbent reactions will be further used for simulations of desulfurization reactions in turbulent gas-particle flow under coal combustion conditions

    Calcium based sorbent calcination and sintering reaction models overview

    Get PDF
    Several models considering the pulverized sorbent reactions with pollutant gases were developed over the past years. In this paper, we present a detailed overview of available models for direct furnace injection of pulverized calcium sorbent suitable for potential application in CFD codes, with respect to implementation difficulty and computational resources demand. Depending on the model, variations in result accuracy, data output, and computational power required may occur. Some authors separate the model of calcination reaction, combined with the sintering model, and afterwards model the sulfation. Other authors assume the calcination to be instantaneous, and focus the modelling efforts toward the sulfation reaction, adding the sintering effects as a parameter in the efficiency coefficient. Simple models quantify the reaction effects, while more complex models attempt to describe and explain internal particle reactions through different approaches to modelling of the particle internal structure

    Heat Transfer to a Boiling Liquid – Numerical Study

    Get PDF
    Due to extensive research efforts within the past thirty years, the mechanisms by which bubbles transfer energy during pool boiling are relatively well understood and have various applications in reactors, rockets, distillation, air separation, refrigeration and power cycles. In this paper, CFD analysis of heat transfer characteristics in nucleate pool boiling of saturated water in atmospheric conditions is performed in order to find out the influence of heat flux intensity on pool boiling dynamics. The investigation is carried out for four cases of different heat flux intensities and obtained results for velocity fields of liquid and void fractions are discussed. Grid independent test is also performed to improve the accuracy of calculation. In this way, complete picture of two-phase mixture behaviour on heated wall is represented

    Intramuscular hemangioma of the retropharyngeal space

    Get PDF
    Background. Intramuscular hemangioma (IMH) is a distinctive type of hemangioma occurring within skeletal muscle. Most IMH are located in the lower extremity, particularly in the muscles of the thigh. When present in the head and neck region, the masseter and trapezius muscle are the most frequently involved sites. Case report. We reported a case of unusual localization of the head and neck IMH occurring within the retropharyngeal space (RPS). To our knowledge, this is the second such case reported in the English literature. The tumor presented as a left-sided neck mass with bulging of the posterior and left lateral oropharyngeal wall on indirect laryngoscopy. Computed tomography (CT) scan revealed an ill-defined mass in the RPS at the oropharyngeal level. The lesion was excised via a transoral approach and microscopically diagnosed as IMH, the complex malformation subtype. Although surgical margins were positive, no recurrence of the tumor was noted in the 17-month follow-up. Conclusion. Intramuscular hemangioma should be considered in the differential diagnosis of deep head and neck masses. The knowledge of the infiltrative nature and recurrence rate of an IMH is useful for appropriate management.

    Influence of the Gray Gases Number in the Weighted Sum of Gray Gases Model on the Radiative Heat Exchange Calculation Inside Pulverized Coal-Fired Furnaces

    Get PDF
    The influence of the gray gases number in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the gray gases number

    Modeling of the reactions of a calcium-based sorbent with sulfur dioxide

    Get PDF
    A mathematical model of calcium sorbent reactions for the simulation of sulfur dioxide reduction from pulverized coal combustion flue gasses was developed, implemented within a numerical code and validated against available measurements under controlled conditions. The model attempts to resemble closely the reactions of calcination, sintering and sulfation occurring during the motion of the sorbent particles in the furnace. The sulfation was based on the partially sintered spheres model (PSSM), coupled with simulated particle calcination and sintering. The complex geometry of the particle was taken into account, with the assumption that it consists of spherical grains in contact with each other. Numerical simulations of drop down tube reactors were performed for both CaCO3 and Ca(OH)(2) sorbent particles and results were compared with experimental data available from the literature. The model of the sorbent reactions will be further used for simulations of desulfurization reactions in turbulent gas-particle flow under coal combustion conditions

    Modeling of Pulverized Coal Combustion for In-Furnace Nox Reduction and Flame Control

    Get PDF
    A cost-effective reduction of NO, emission from utility boilers firing pulverized coal can be achieved by means of combustion modifications in the furnace. It is also essential to provide the pulverized coal dfffitsion flame control. Mathematical modeling is regularly used for analysis and optimization of complex turbulent reactive flows and mutually dependent processes in coal combustion furnaces. In the numerical study, predictions were performed by an in-house developed comprehensive three-dimensional differential model of flow, combustion and heat/mass transfer with submodel of the fuel- and thermal-NO formation/destruction reactions. Influence of various operating conditions in the case-study utility boiler tangentially fired furnace, such as distribution of both the fuel and the combustion air over the burners and tiers, fuel-bound nitrogen content and grinding fineness of coal were investigated individually and in combination. Mechanisms of NO formation and depletion were found to be strongly affected by flow, temperature and gas mixture components concentration fields. Proper modifications of combustion process can provide more than 30% of the NO, emission abatement, approaching the corresponding emission limits, with simultaneous control of the flame geometry and position within the furnace. This kind of complex numerical experiments provides conditions for improvements of the power plant furnaces exploitation, with respect to high efficiency, operation flexibility and low emission.Turbulence Workshop, Aug 31-Sep 02, 2015, Univ Belgrade, Fac Mech Engn, Belgrade, Serbi
    • …
    corecore