88 research outputs found
Determination of particulate sizes in ceramic powders by electron microscopy
Ceramic powders of small particulate size can be characterized by electron microscopy. The usual methods of powder preparation were tested and compared. The data are analyzed in two ways
Study of lithium encapsulation in porous membrane using ion and neutron beams
Ion track-etched membranes are porous systems obtained by etching of the latent ion tracks using a suitable etchant solution. In this work, control of the pores' spatial profiles and dimensions in PET polymers was achieved by varying etching temperature and etching time. For determination of the pores' shape, Ion Transmission Spectroscopy technique was employed. In this method, alterations of the energy loss spectra of the transmitted ions reflect alterations in the material density of the porous foils, as well as alterations of their thickness. Simulation code, developed by the team, allowed the tomographic study of the ion track 3D geometry and its evolution during chemical etching. From the doping of porous membranes with lithium-based solution and its analysis by Thermal Neutron Depth Profiling method, the ability of porous PET membranes to encapsulate nano-sized material was also inspected. The study is important for various applications, e.g., for catalysis, active agents, biosensors, etc
An Atlas of extraterrestrial particles collected with NASA U-2 aircraft, 1974 - 1976
Extraterrestrial particles collected during U-2 flights in the stratosphere were divided into four groups: chondritic, iron-sulfur--nickel, mafic silicates, and others. The chondritic aggregates are typically composed of Fe, Mg, Si, C, S, Ca, and Ni. Detectable levels of He-4 implanted from the solar wind occur in some. Olivine, spinel, and possibly pyrrhotite and a hydrated layered-lattice silicate were identified. The chondritic ablation particles contain no sulfur and appear to have been melted. Magnetite, olivine, and pyroxene were identified. The iron-sulfur-nickel type particles resemble meteoritic iron sulfide with a small amount of nickel, and contain magnetite and troilite. The mafic silicate type particles are iron magnesium silicate grains with clumps of chondritic aggregate particles adhering to their surfaces. Olivine and possibly pyrrhotite and pyroxene were identified. Most of the iron-nickel type particles are spherules and include taenite and wustite. The other type particles include nickel-iron mounds on spheroidal glassy-like grains having chondritic-like elemental abundances
Instrumentation for study of nanomaterials in NPI REZ (New laboratory for material study in Nuclear Physics Institute in REZ)
Nano-sized materials become irreplaceable component of a number of devices for every aspect of human life. The development of new materials and deepening of the current knowledge require a set of specialized techniques-deposition methods for preparation/modification of the materials and analytical tools for proper understanding of their properties. A thoroughly equipped research centers become the requirement for the advance and development not only in nano-sized field. The Center of Accelerators and Nuclear Analytical Methods (CANAM) in the Nuclear Physics Institute (NPI) comprises a unique set of techniques for the synthesis or modification of nanostructured materials and systems, and their characterization using ion beam, neutron beam and microscopy imaging techniques. The methods are used for investigation of a broad range of nano-sized materials and structures based on metal oxides, nitrides, carbides, carbon-based materials (polymers, fullerenes, graphenes, etc.) and nano-laminate composites (MAX phases). These materials can be prepared at NPI using ion beam sputtering, physical vapor deposition and molecular beam epitaxy. Based on the deposition method and parameters, the samples can be tuned to possess specific properties, e.g., composition, thickness (nm-μm), surface roughness, optical and electrical properties, etc. Various nuclear analytical methods are applied for the sample characterization. RBS, RBS-channeling, PIXE, PIGE, micro-beam analyses and Transmission Spectroscopy are accomplished at the Tandetron 4130MC accelerator, and additionally the Neutron Depth Profiling (NDP) and Prompt Gamma Neutron Activation (PGNA) analyses are performed at an external neutron beam from the LVR-15 research reactor. The multimode AFM facility provides further surface related information, magnetic/electrical properties with nano-metric precision, nano-indentation, etc
ACE gene insertion/deletion polymorphism has a mild influence on the acute development of left ventricular dysfunction in patients with ST elevation myocardial infarction treated with primary PCI
<p>Abstract</p> <p>Background</p> <p>We evaluated the associations among angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism, ACE activity and post-myocardial infarction (MI) left ventricular dysfunction and acute heart failure (AHF) early after presentation with MI with ST-segment elevation (STEMI).</p> <p>Methods</p> <p>A total of 556 patients with STEMI treated by primary PCI (421 patients without AHF and 135 patients with AHF) were the study population. The activity of BNP, NT-ProBNP and ACE were measured at hospital admission and 24 h after MI onset. Left ventricular angiography was done before PCI; echocardiography was undertaken between the third and fifth day after MI.</p> <p>Results</p> <p>In comparison with the II genotypes group, the DD/ID group had a higher level of ACE activity upon hospital admission (p < 0.001). We found a significantly higher level of ACE activity in patients with moderate LV dysfunction (EF 40-54%) in comparison both with patients with preserved LV function (EF ≥55%) and with patients with severe LV dysfunction (p = 0.028). A non-significant trend towards a higher incidence of mild AHF (22.1% vs. 16.02%, p = 0,093), a significantly higher value of end-systolic volume (ESV/BSA) (30.0 ± 12.3 vs. 28.5 ± 13.0; p < 0.05) and lower EF (50.2 ± 11.1 vs. 52.7 ± 11.7; p < 0.05) in the DD/ID genotypes group was noted. Even after multiple adjustments according to multivariate models, the EF for the DD/ID group remained significantly lower (p = 0,033). The DD/ID genotypes were associated with a significantly higher risk of EF <45% (OR 2.04 [95% CI 1.28; 3.25]).</p> <p>Conclusions</p> <p>These results suggest that the I/D polymorphism of ACE is associated with the development of LV dysfunction in the acute phase after STEMI. We demonstrated for the first time an association of the low ACE activity with the severe LV dysfunction, although patients with moderate LV dysfunction had higher level ACE activity than patients with preserved LV function.</p
Multislice CT angiography in the selection of patients with ruptured intracranial aneurysms suitable for clipping or coiling
Introduction We sought to establish whether CT angiography (CTA) can be applied to the planning and performance of clipping or coiling in ruptured intracranial aneurysms without recourse to intraarterial digital subtraction angiography (IA-DSA). Methods Over the period April 2003 to January 2006 in all patients presenting with a subarachnoid haemorrhage CTA was performed primarily. If CTA demonstrated an aneurysm, coiling or clipping was undertaken. IA-DSA was limited to patients with negative or inconclusive CTA findings. We compared CTA images with findings at surgery or coiling in patients with positive CTA findings and in patients with negative and inconclusive findings in whom IA-DSA had been performed. Results In this study, 224 consecutive patients (mean age 52.7 years, 135 women) were included. In 133 patients (59%) CTA demonstrated an aneurysm, and CTA was followed directly by neurosurgical (n=55) or endovascular treatment (n=78). In 31 patients (14%) CTA findings were categorized as inconclusive, and in 60 (27%) CTA findings were negative. One patient received surgical treatment on the basis of false-positive CTA findings. In 17 patients in whom CTA findings were inconclusive, IA-DSA provided further diagnostic information required for correct patient selection for any therapy. Five ruptured aneurysms in patients with a nonperimesencephalic SAH were negative on CTA, and four of these were also false-negative on IA-DSA. On a patient basis the positive predictive value, negative predictive value, sensitivity, specificity and accuracy of CTA for symptomatic aneurysms were 99%, 90%, 96%, 98% and 96%, respectively. Conclusion CTA should be used as the first diagnostic modality in the selection of patients for surgical or endovascular treatment of ruptured intracranial aneurysms. If CTA renders inconclusive results, IA-DSA should be performed. With negative CTA results the complementary value of IA-DSA is marginal. IA-DSA is not needed in patients with negative CTA and classic perimesencephalic SAH. Repeat IA-DSA or CTA should still be performed in patients with a nonperimesencephalic SAH
Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field
A manganese-doped BaTiO3 was investigated with regard to the degradation of resistivity under a high d.c. electric field. Degradation was measured as a function of time, composition and temperature, using an electric field of 3 Vμm−1. The activation energy of the process was found to be 1.13 eV. to clarify the mechanismI againstU characteristics andI againstT graphs of new, degraded and relaxed samples were studied. Electron paramagnetic resonance and potential measurements were found to be useful in describing the degradation. Finally, a brief model is put forward to account for the observed phenomena. It is based on an injection of oxygen vacancies from the anode, which is accompanied by a reduction of manganese in the lattice.
Based on a thesis submitted by J. Rödel for the diploma degree at the Department of Ceramics, University of Erlangen, West Germany
- …