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In March 1974 a program was undertaken to collect extraterrestrial
particles with NASA U-2 aircraft. Using an inertial impaction collector,

5m3of

over 150 extraterrestrial particles were collected from 1.4 x 10
stratospheric air. This atlas is a compendium of scanning electron micro-
scope (SEM) pictures and results of analytical studies performed on a repre-
sentative sample of those particles. Included with the pictures in sec-

tion V of this report are x-ray emission spectra taken in the SEM,
1. COLLECTION TECHNIGUES

Particles are collected by ramming a 20 t:m2 (5 cm x 4 cm) oil-
coated collection surface through the ambient air at the aircraft's cruise
velocity of 200 m/s. Particles larger than ~ 3 ym are collected by inertial

deposition while those <1 um follow flow lines around the impaction surface
and are not collected. Particle bounce-off is prevented by coating the col-
lection surface with a >10 pn coating of 5 x 105 centistokes silicone oil.

The basic collector was designed at Ames (Ferry and Lem, 1974) for
collecting submicron stratospheric aerosols. For collection of extrater-
restrial particles, minor modifications were made so that larger surface

areas could be exposed.
II. ANALYTICAL PROCEDURE

Collected particles are analyzed by individually removing them from
collection surfaces, mounting them on special surfaces for SEM analysis

and then washing them with xylene to remove the silicone oil. The particles



are then analyzed in the SEM for morphology and relative elemental abun-
dances as determined with a solid state Si(Li) x-ray detector. By raster
scanning on the portion of the particle facing the x-ray detector and cali-
bration with mineral standards (similar to the unknowns), elem~ntal
ratios are routinely determined to an accuracy better than a factor of two,

A number of particles have been mounted on micron-size glass fiber
and exposed to x rays in modified Debye-Scherrer pcwder diffraction
cameras. Particles were exposed in both a 57.3 mm diameter camera with
a continuous helium-purged atmosphere, and a 28.7 mm diameter camera
insert placed inside a 57.3 mm diameter camera which was evacuated during
exposure to x rays. Exposure times for these particles were typically 120-
168 hours. Both Cr and Cu radiation was used depending upon the
amount of Fe in the particle (Fe fluoresces with Cu radiation darkening the
film) and the wavelength range of the diffraction pattern to be recorded on
the film. Identifications were made using both overlays of x-ray diffrac-
tion patterns from known mineral standards and version 10 (Kyte and
Blanchard, 1975) of the Johnson-Vand computer program for identification
of x-ray diffraction patterns.

Some particles were crushed and mouvnted on thin carbon films for
transmission electron microscopy to observe crystallite morphology in the

50-1,000 X size range.
III. THE COLLECTED PARTICLES

Six hundred particles in the 2 ym - 40 yn size range were removed

from collection surfaces and analyzed in the SEM. The vast majority of



these particles were aluminum oxide, a common stratospheric aerosol pro-
duced by solid fuel rockets (Brownlee et al., 1976). Disregarding particles
which are largely aluminum, however, more than half of the collected par-
ticles have elemental abundances which closely match bulk abundances of
primitive meteorites or minerals which are common in Cl and C2 carbonaceous
chondrite meteorites. These particles have compositions uniquely different
from obvious stratospheric, laboratory, and aircraft contaminant particles

(Al particles, skin flakes, 'I'iO2 paint, Cd plating, etc.)

Particle Groups. On the basis of elemental abundances we have

identified >150 particles from the U-2 flights which we believe are extra-
terrestrial. The majority of these particles have relative Mg, Fe, Si, C, S, Ca,
and Ni abundances within a factor of 2 of Cl and C2 carbonaceous chondrite
meteorite abundances (Mason, 1971). Importantly, we have not detected

even small quantities of elements which were not cosmically abundant (i.e.,
Cu, Cl, Zn, Cd, etc.). Because no known terrestrial (or lunar) material
matches the composition for these seven cosmically abundant elements, we

feel this is a very strong diagnostic criterion for identify. -  traterrestrial
material. The particles which closely match cosmic abundances we refer to

as "chondritic." No genetic association with chondrules is intended.

In addition to the chondritic particles other composition groups have
been identified as extraterrestrial by their physical association with chon-
dritic particles. These composition groups have been found as single par-
cles, as particles with chondritic material adhering té their surfaces, as

particles imbedded in single chondritic particles, and as particles found



inside chondritic parti. iich broke into fragments during collection
or were intentionally crushed in the lab. From the observed associations
we believe that all extraterrestrial particle groups identified were at one
time in intimate contact with each other. A final proof of the extraterrestri-
al origin of these particles was the recent detection of large an . ts of
solar wind implanted He in some of the particles.

We have defined four major compositional groups into which nearly
all of the collected extraterrestrial particles can be placed. Sixty percent
of the particles classify as chondritic, 30% as iron-sulfur-nickel, and

10% as mafic silicates. The properties of these groups follow.

A. CHONDRITIC - (Chondritic Elemental Abundances) Chondritic par-

ticles have chondritic (some exceptions) elemental abundances. Based on
differences in morphology and S abundance, the chondritic particles fall
into two subgroups: chondritic aggregates, and chondritic ablation.

Chondritic Aggregate. Ninety percent of the chondritic particles are

aggregates of 1,000 R sized grains. Typically, the aggregates are compact
with little pore space. However, in some particles the component grains are
loosely bound and the particle structure is quite porous. These aggicgate
particles typically have chondritic abundances (within a factor of 7) for Fe,
Mg, Si, C, S, Ca, and Ni (Brownlee et al., 1976). Mn and Cr run often be
detected at concentrations approaching the limits of detection. Half of the
particles have carbon contents >5%. Optically the aggregates are very

black, undoubtedly the result of high carbon contents.
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Six chondritic aggregate particles were analyzed for carbon in an
ARL electron microprobe. During analysis the carbon content of the
particles was observed to decrease with time. After analysis all the par-
ticles were surrounced with large halos of condensed carbonaceous material
from the particles. Apparently some of the carbon in the particles is in a

volatile organic form. The results from the carbon analyses are listed in

Table 1.
Table 1
Particle $C
SP-4 2.2
SP-5 5.8
SP-6 13.5
SP-7 2.7
SP-8 > 15.1
MP-1 b

Ten chondritic particles were analyzed for 4He at Atomics

International, Canoga Park, California. Five of the particles contained detec-

4He at levels of = 10"2 cm?' g_l. The highest 4He concentration was

3

table

g-l . This is a level of 4He higher than most gas-rich meteorites

but comparable to typical lunar soils. The 4He is undoubtedly implanted solar

> 10_1 cm

wind and proves that the particles are not only extraterrestrial but, also, that
they are true micrometeorites. Those particles without 4He presumably out-

gassed during atmospheric entry.
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X-ray diffraction patterns from four of these particles show strong lines
of a spinel phase (either Fe304 or LigFe204). and a sulfide which is probably
pyrrhotite (FeS or Fe l-xs) . In addition, two of these patterns include lines
from olivine. Because of elemental composition, the major phase must be a
silicate but evidently it produces only weak lines and has not yet been identified.
In one particle a 7 X line suggests evidence for the existence of a hydrated
layer-lattice silicate phase. X-ray powder patterns from these particles are
very similar to powder patterns obtained from matrix material from the
Murchison (C2) meteorite which had been heated to 450°C (Fuchs et al., 1973).

Four chondritic aggregate particles have been crushed and mounted
on thin carbon films for transmission electron microscopy (TEM). The par-
ticle structures observed in TEM are highly diverse and complex. Many
of tl:= 1,000 & sized grains seen in the SEM are actually aggregates of much
smaller grains (50 K - 500 R) as seen in the TEM, Many of the larger grains
are covered with 300 X coatings of a low atomic weight amorphous material
(carbon?). These coatings have not been observed on meteorite samples
used as controls.

At least 50% of the grains in the particles are crystalline and many
of the grains produce good electron diffraction patterns. A few of the
grains are euhedral. Several hexagonal platelets have been observed
which are opaque to the electron beam (pyrrhotite?).

Direct comparison of the chondritic aggregates with the matrix of
type 1 and 2 carbonaceous chondrites suggests that they are different.

The carbonaceous chondrite matrix material consists largely of a layer-lattice
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silicate which in the TEM has the appearance of crumpled foils and fibrous
masses. Related textures have been observed in the stratospheric particles
but only rarely. The stratosp! - ric particles are aggregates of more-or-less
equidimensional grains with widely divarse properties. An additional
apparent differe ice is that the hexagonal electron diffraction patterns (with
large d-spacings) frequently observed in carbonaceous chondrites have

not been observed for the several hundred grains examined from the
stratospheric particles,

Chondritic Ablation. Ten percent of the particles with chondritic

compositions are spherules (or spheroids) which are not porous and do

not contain sulfur. The particle shapes imply the particles were molten

at one time. The absence of sulfur is probably the result of thermal alter~
ation. X-ray diffraction of one particle revealed a composition of magnetite
and olivine. In composition, texture, and mineralogy these spherules

are very similar to fusion crusts of chondritic meteorites (Blanchard and
Cunningham, 1974). We believe that these particles experienced ablation
during atmospher.c entry (Brownlee et al., 1975). The one particle
analyzed with x-ray diffraction has a mineralogical composition of magnetite,

olivine (~Fo 60), and pyroxene (probably enstatite).

B. IRON-SULFUR-NICKEL - (An iron-sulfur mineral with a few percent
nickel). Iron-sulfur-nickel (Fe-S-Ni, or FSN) particles are roughly

similar to meteoritic troilite or pyrrhotite containing a few percent Ni. In many
of the particles, sulfur is deficient relative to stoichiometric FeS by factors

of 50% (sometimes more). The FSN particles may be related to the poorly
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characterized Fe, S, O, and Fe, S, C phases reported in carbonaceous
chondrites (Fuchs et al., 1973), or they may be mixtures of FeS and Feso‘.
X-ray diffraction of a single 8 um spherical FSN particle showed it to be a
mixture of magnetite and troilite,

Unlike the chondritic particles, the FSN particles come in a wide
var ety of forms. The majority of these particles are spheres, but they also
have been found as solid irregular masses, aggregates, well-defined single
crystals (octahedron with cubic truncation), and stacks of platelets. Some
of the nonspherical FSN particles show remarkable similarities to fo=ms of
magnetite found in Cl meteorites (Jebwab, 1971). The FSN spheres may be

ablation debris, but the .rregular shapes are probably not.

&y MAFIC SILICATES - (ulivine or Pyroxene). These particles are

iror -poor olivine and pyroxenes with clumps of chondritic aggregates
adhering to their gurfaces., One euhedral crystal has been found, but
typically they are subhedral to irregular. Eight of the particles Lave ele-
mental abundances similar to pyroxene and eight to olivine. The x-ray dif-
fraction pattern taken from one particle was identified as a coarse-grained
olivine (FO 70) with minor phases tentatively identified as pyrrhotite and

pyroxene.

IRON-NICKEL. Seven particles have been collected in which only Fe

and Ni were detected. Ni to Fe ratios fall within the 0.05 to 0.10 range
except for one particle which has a ratio of 0.4. Moﬂ of the particles are
spheres and are almost certainly ablation debris. Two of the Fe,Ni particles
are irregular with very odd shapes and possibly indicative of ablation.

Because the FSN particles show a continuous trend of S/Fe ratios approaching
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zero, it is quitc possible that the Fe,Ni spheres are FSN particles which
have experienced total depletion of sulfur during ablation. The x-ray dif-
fraction pattern taken from one spherical particle contained taenite (Fe,Ni)
and wustite (Fe, 0). The presence of wustite is sufficient proof (Davis,

1976) that it has experienced ablation ana is extraterrestrial,

E. OTHER PARTICLES. Three particles were collected which are covered

with I e,Ni (Fe/Ni ~ 20) mounds (one micron and smaller in size). Two of
these are spheroidal, glassy-like objects with approximate chondritic abun-
dances. These particles are morphologically very similar to glassy agglutinates
found in lunar coils. The third particle is a very strange porous particle
composed of Fe,S and Si which is covered with large numbers of Fe,Ni
mounds. These particles are probably not ablation debris because it is not
possible that small metallic Fe mounds could be produced by ablation in an
atmosphere containing oxygen without being oxidized to an iron oxide.
Because of similarities to impact-produced features in lunar soils, we
believe that these particles may have been produced by meteoroid coliisions
in space

The FSN and most of the mafic silicate particles are believed to be
extraterrestrial because they have been found in physical association with
(e.g., actually inside) chondritic aggregate particles. Other particle types,
although rare, have been found in crushed chondritic aggregates. For
example, on one flight a chondritic aggregate particle was collected that
broke into ~ 100 fragments upon impacting the collection surface. Most of
the fragments were small pieces of chondritic aggregate material but also
found in the debris were FSN particles, enstatite, olivine, an opaque high

Si mineral (possibly SiC) and two fragments of a Si, Al, Ca, Ti mineral.
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Other extraterrestrial particle types probably exist in our collec-
tions but have not been identified either because they have not been found
in physical association with the three major cosmic dust groups, or because
they do not have distinctive compositions. Since almost all of the collected
particles are either high Al particles, identified micrometeorites, or obvious
contaminants, we believe other cosmic dust types probably constitute only a
minor component ( <10%) of the extraterrestrial particles found normally in

the stratosphere.

IV. SUMMARY

The U-2 collections indicate that the flux of extraterrestrial dust in
the < *. it .sphere is 3 x 10-6 particles m-zl-l (diameter > 10 ym). In the
2-30 ym size range most of the particles are true micrometeorites and have
not melted during atmospheric entry. Although a variety of particle types
has been observed it presently appears that they could be genetically
related and derived from a common parent body type because of their associ-
ation. The parent body matrix appears to consist of an opaque fine-grained
matrix material containing minor amounts of inclusions. The matrix is an
aggregate of 1,000 R sized grains whose cumulative composition is close
to cosmic abundances; it is very black and contains 35% finely dispersed
carbon. Imbedded in the fine-grained matrix are occasional micron-sized
inclusions, primarily Ni-bearing iron sulfides (similar to troilite) and
olivines and pyroxenes with compositions clustering towards forsterite and

enstatite. The only known materials which are similar to these recovered
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cosmic dust particles in terms of elemental abundance, texture, mineralogy,
and inclusion content are type | and the matrix of type 2 carbonaceous
chondrite meteorites,

The following properties of the micrometeorite parent material indi-
cate a strong similarity to Cl and C2 carbonaceous chondrites and strong
differences from other meteorite types:

(1) Extremely fine-grained particle size

(2) High carbon abundance

(3) Low iron, Jlivine, and pyroxene abundance

(4) Magnetite content

(5) Nickel-bearing iron sulfides
The major difference between the micrometeorite material and C1 meteorite "
is - the detailed morphology of tue fine-grained material, and the existence

of mineral types not observed in Cl's.

V. INTERPHETATION OF X-RAY SPECTRA SHOWN IN FIGURES 1-27

The x-ray emission spectra included in this atlas were made in the
SEM with an EDAX solid state x-ray detector. X-ray emission from the par-
ticles was produced by bombardment with a 20 keV electron beam. The beam
was raster scanned on the particle half facing the detector, producing an
averaged »nalysis with an effective take-off angle of n45°,

The spectra are displayed as x-ray photon counts (Y axis) vs. x-ray
photon energy in keV (X axis). The spectra were nominally integrated so
that the highest peak would have 1(.)4 counts in the channel containing the
highest number of counts. In all cases the X-axis ranges from 0 keV to

10 keV.
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The x-ray lines on the spectra are primarily I'Cﬂ emission lines. The

positions of important lines are:

Mg Ku 1.3 keV
Al K 1.5 keV (Al is usually unresolved due to the close-
2 ness of large Mg and Si peaks)
Si Ku 1.8 keV
S Ku 2.3 keV
PdL = 2.8 keV
Ca Ka 3.7 keV
Cr Ku 5.4 keV
Mn Ku 5.9 keV
FeK 6.4 keV
Fe K . 7.1 keV
NiK 7.5 keV

The Pd line on all particles results from a thin palladium coating which was
sputtered onto the samples to provide a conductive coating. Three par-
ticles Us-5A 21, 29, and 30 were coated with gold-palladium. The gold on
these samples produces a line coincident with S and a second line (I.u) at
9.7 keV. A few spectra show small differences in energy values due to
electronic drift. An example of line identification is given in Figure 1 for
an analysis of a representative sample of the Allende meteorite.

A material containing cosmic abundances produces the following
approximate peak height ratios as observed on the EDAX unit under our oper-
ating conditions.

Mg/Si ~ 0.5

Fe/Si ~0.5



S/8i
Ca/si
Ni/Si
Mn/Si
Cr/Si

~0.3
~0.05
~ 0,05
~0.01
~0.01

13
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Figure 2 U2-5A (21) Chondritic aggregate unusually high
porosity. Major elements:  Si, Fe, S, Mg. Minor elements:
Ca, Ni (Au-Pd coating). (all scale bars are 1 um)
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Figure 3 U2-6B (24) Typical chondritic aggregate; contains
a1 x 2 um silicate inclusion. Major elements: Si, Mg, Fe, S
Minor elements: Ca, Ni, Cr,




Figure 4, U2-5A (30) Chondritic aggregate, high porosity
with 3 um inclusion. Major elements: Si, Mg, S, Fe. Minor
elements: Ca, Ni, Au (coating)
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(47) Chondritic aggregate
Ca, Ni

Si, Mg, Fe, S. Minor elements
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Figure 11 U2-2E (2BA) Chondritic

agaregate that fragmented upon impaction on the collection surface

(b) Mafic silicate grain on left connected to chondritic aggregate material
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Figure 11 U2-2E (28A) Chondritic aggregate that fragmented upon impaction on the collection surface

(¢) FSN hexagonal crystal with attached chondritic aggregate material



Figure 12 U2-6A (9) Parts of a fragmented particle

(a) FSN, an unusual stack ot platele
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Figure 15 U26A (18) Chondritic ablation. Major elements

Fe, 51, Mg. Minor elements: Ca, Cr, Ni
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1. 1? 75 .15’ 25:0““ Figure 16 U26E (5) FSN, typical sphere with surface

texture. Major elements: Fe, S. Minor elements: Ni
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wre 19 268 (6) FSN Kggregate very rare Major

elements: S, Fe. Minor elements: Si, Ni
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Figure 22 U258 (200 Mafic silicate with adhering chondritic aggregate material. Silicate: Fo 93 olivine. Major elements: Mg, Si

Minor elements: Fe. Chondritic material: Major elements: Si, Fe, Mg, S. Minor elements: Ca, Ni



Figure 23 U258 (54) Mafic silicate, Fo 55 olivine. Surface

features not detectably ditferent in composition from crystal

l F 3 1 7 ‘ ‘ . ’ a ‘ . . x (perh.aps because they are small), Major elements: Si, Fe, Mg

Minor element: Ca
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Figure 24 'J2-5B (30) Mafic silicate grain, Fo 95 olivine
Surface feawures not detectably different in composition
(perhaps because they »/e¢ small), Major elements: Mg, Si
Minor elements: Fe, Cr
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transparent. high Si-Ca-Al grain. Chondritic material Major elements
i ]

Figure 25 Uz2-6C (35) Chondritic agaregate with a 6 um smooth
n chondritic

material: Major elements: 51, Ca, Al Minor elements: S, Fe (probably fror
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Figure 26 U2-5A (39) Rounded chondritic particle covered
with Fe-Ni mounds. Particle is possibly the result of a
collision in space. Major elements: Si, Mg, Fe. Minor
elements: Ca, Ni, Cr
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Figure 27 U29A (4) Very strange and unusual particle

covered with Fe-Ni mounds. Major elements Si, Fe, §

Minor element: Ni

GPO 968+« 431
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