171 research outputs found
The value of repeated lumbar puncture to test for xanthochromia, in patients with clinical suspicion of subarachnoid haemorrhage, with CT-negative and initial traumatic tap.
OBJECTIVES: For the diagnosis of subarachnoid haemorrhage (SAH), the presence of cerebrospinal fluid (CSF) xanthochromia is still considered the gold standard for patients with a thunderclap headache, in the absence of blood on brain CT scan. However, a traumatic lumbar puncture (LP) typically results in high concentrations of oxyhaemoglobin in CSF, impairing the detection of xanthochromia and preventing the reliable exclusion of SAH. In this context, the value of a repeat lumbar puncture has not yet been described. MATERIALS AND METHODS: A retrospective case series of suspected SAH patients, with a negative CT scan and initial traumatic LP, managed with a repeat LP to assess for CSF xanthochromia. Clinical notes, laboratory and imaging results were reviewed. RESULTS: Between August 2011 and January 2020, 31 patients with suspected SAH were referred to our neurosurgical unit following negative CT and traumatic LP. A repeat LP was performed in 7 of the 31 patients, 2.4 days (±0.79 SD) after the first traumatic LP. CSF spectrophotometry analysis from repeated LP in all 7 patients was negative for xanthochromia. No adverse clinical events were recorded on average 18 months following discharge. CONCLUSION: A repeat LP performed following a traumatic tap can still yield xanthochromia-negative CSF, thereby, excluding SAH, avoiding unnecessary invasive angiography and overall promoting the safer management of these patients
Analyzing historical and future acute neurosurgical demand using an AI-enabled predictive dashboard
Characterizing acute service demand is critical for neurosurgery and other emergency-dominant specialties in order to dynamically distribute resources and ensure timely access to treatment. This is especially important in the post-Covid 19 pandemic period, when healthcare centers are grappling with a record backlog of pending surgical procedures and rising acute referral numbers. Healthcare dashboards are well-placed to analyze this data, making key information about service and clinical outcomes available to staff in an easy-to-understand format. However, they typically provide insights based on inference rather than prediction, limiting their operational utility. We retrospectively analyzed and prospectively forecasted acute neurosurgical referrals, based on 10,033 referrals made to a large volume tertiary neurosciences center in London, U.K., from the start of the Covid-19 pandemic lockdown period until October 2021 through the use of a novel AI-enabled predictive dashboard. As anticipated, weekly referral volumes significantly increased during this period, largely owing to an increase in spinal referrals (p < 0.05). Applying validated time-series forecasting methods, we found that referrals were projected to increase beyond this time-point, with Prophet demonstrating the best test and computational performance. Using a mixed-methods approach, we determined that a dashboard approach was usable, feasible, and acceptable among key stakeholders
The Need for Head Protection Protocols for Craniectomy Patients during Rest, Transfers and Turning
After craniectomy, patients are generally advised to wear a helmet when mobilising to protect the unshielded brain from damage. However, there exists limited guidance regarding head protection for patients at rest and when being transferred or turned. Here, we emphasise the need for such protocols and utilise evidence from several sources to affirm our viewpoint. A literature search was first performed using MEDLINE and EMBASE, looking for published material relating to head protection for patients post-craniectomy during rest, transfer or turning. No articles were identified using a wide-ranging search strategy. Next, we surveyed and interviewed staff and patients from our neurosurgical centre to ascertain how often their craniectomy site was exposed to external pressure and the precautions taken to prevent this. 59% of patients admitted resting in contact with the craniectomy site, in agreement with the observations of 67% of staff. In 63% of these patients, this occurred on a daily basis and for some, was associated with symptoms suggestive of raised intracranial pressure. 44% of staff did not use a method to prevent craniectomy site contact while 65% utilised no additional precautions during transfer or turning. 63% of patients received no information about avoiding craniectomy site contact upon discharge, and almost all surveyed wished for resting head protection if it were available. We argue that pragmatic guidelines are needed and that our results support this perspective. As such, we offer a simple, practical protocol which can be adopted and iteratively improved as further evidence becomes available in this area
Application of Water Quality Index for Assessment Water Quality in Some Bottled Water Erbil City, Kurdistan Region, Iraq
Water quality index was applied to assessment water quality of six different types of bottled water that's available in Erbil city (Life, Shireen, Kani, Al-Hayat, Rawan, and Masafi) for drinking purposes, depending on the physicochemical parameters of water (Turbidity, EC, TDS, pH, Alkalinity, Hardness, Ca+2, Mg+2, and No3-2). The water quality index showed that the Life, Rawan, and Masafi are excellent; also Shireen, Kani, and Al-Hayat are good for drinking purposes depending on the World Health Organization (WHO) standards. The results indicate the bottled water quality generally changed from years 2009 to 2012, some of the bottles have changed to the better and improved their quality, and another's changed to the worse side and declined their quality. WQI is also suggested as a very helpful tool that enables the public and decision makers to evaluate water quality of different bottled waters
Explosions of water clusters in intense laser fields
Energetic, highly-charged oxygen ions, (), are copiously
produced upon laser field-induced disassembly of highly-charged water clusters,
and , 60, that are formed by seeding high-pressure
helium or argon with water vapor. clusters (n40000) formed under
similar experimental conditions are found undergo disassembly in the Coulomb
explosion regime, with the energies of ions showing a
dependence. Water clusters, which are argued to be considerably smaller in
size, should also disassemble in the same regime, but the energies of fragment
O ions are found to depend linearly on which, according to
prevailing wisdom, ought to be a signature of hydrodynamic expansion that is
expected of much larger clusters. The implication of these observations on our
understanding of the two cluster explosion regimes, Coulomb explosion and
hydrodynamic expansion, is discussed. Our results indicate that charge state
dependences of ion energy do not constitute an unambiguous experimental
signature of cluster explosion regime.Comment: Submitted to Phys. Rev.
Direct and Indirect Detection of Dark Matter in D6 Flavor Symmetric Model
We study a fermionic dark matter in a non-supersymmetric extension of the
standard model with a family symmetry based on D6xZ2xZ2. In our model, the
final state of the dark matter annihilation is determined to be e+ e- by the
flavor symmetry, which is consistent with the PAMELA result. At first, we show
that our dark matter mass should be within the range of 230 GeV - 750 GeV in
the WMAP analysis combined with mu to e gamma constraint. Moreover we
simultaneously explain the experiments of direct and indirect detection, by
simply adding a gauge and D6 singlet real scalar field. In the direct detection
experiments, we show that the lighter dark matter mass ~ 230 GeV and the
lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds
reported by CDMS II and XENON100. In the indirect detection experiments, we
explain the positron excess reported by PAMELA through the Breit-Wigner
enhancement mechanism. We also show that our model is consistent with no
antiproton excess suggested by PAMELA.Comment: 20 pages, 9 figures, 2 tables, accepted version for publication in
European Physical Journal
Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)—attributed to the transmission of Aβ seeds—have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA
Characterization of patients with idiopathic normal pressure hydrocephalus using natural language processing within an electronic healthcare record system
OBJECTIVE: Idiopathic normal pressure hydrocephalus (iNPH) is an underdiagnosed, progressive, and disabling condition. Early treatment is associated with better outcomes and improved quality of life. In this paper, the authors aimed to identify features associated with patients with iNPH using natural language processing (NLP) to characterize this cohort, with the intention to later target the development of artificial intelligence–driven tools for early detection. /
METHODS: The electronic health records of patients with shunt-responsive iNPH were retrospectively reviewed using an NLP algorithm. Participants were selected from a prospectively maintained single-center database of patients undergoing CSF diversion for probable iNPH (March 2008–July 2020).
Analysis was conducted on preoperative health records including clinic letters, referrals, and radiology reports accessed through CogStack. Clinical features were extracted from these records as SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) concepts using a named entity recognition machine learning model.
In the first phase, a base model was generated using unsupervised training on 1 million electronic health records and supervised training with 500 double-annotated documents. The model was fine-tuned to improve accuracy using 300 records from patients with iNPH double annotated by two blinded assessors. Thematic analysis of the concepts identified by the machine learning algorithm was performed, and the frequency and timing of terms were analyzed to describe this patient group. /
RESULTS: In total, 293 eligible patients responsive to CSF diversion were identified. The median age at CSF diversion was 75 years, with a male predominance (69% male). The algorithm performed with a high degree of precision and recall (F1 score 0.92).
Thematic analysis revealed the most frequently documented symptoms related to mobility, cognitive impairment, and falls or balance. The most frequent comorbidities were related to cardiovascular and hematological problems. /
CONCLUSIONS: This model demonstrates accurate, automated recognition of iNPH features from medical records. Opportunities for translation include detecting patients with undiagnosed iNPH from primary care records, with the aim to ultimately improve outcomes for these patients through artificial intelligence–driven early detection of iNPH and prompt treatment
Structure property relationship of suspension thermally sprayed WC-Co nanocomposite coatings.
Tribomechanical properties of nanostructured coatings deposited by suspension high velocity oxy-fuel (S-HVOF) and conventional HVOF (Jet Kote) spraying were evaluated. Nanostructured S-HVOF coatings were obtained via ball milling of the agglomerated and sintered WC-12Co feedstock powder, which were deposited via an aqueous-based suspension using modified HVOF (TopGun) process. Microstructural evaluations of these hardmetal coatings included transmission electron microscopy, x-ray diffraction, and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The nanohardness and modulus of the coated specimens were investigated using a diamond Berkovich nanoindenter. Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that low porosity coatings with nanostructured features were obtained. High carbon loss was observed, but coatings showed a high hardness up to 1000 HV2.9N. S-HVOF coatings also showed improved sliding wear and friction behavior, which were attributed to nanosized particles reducing ball wear in three-body abrasion and support of metal matrix due to uniform distribution of nanoparticles in the coating microstructure
- …