25 research outputs found

    Using electrical impedance spectroscopy to identify equivalent circuit models of lubricated contacts with complex geometry: in-situ application to mini traction machine

    Full text link
    Electrical contact resistance or capacitance as measured between a lubricated contact has been used in tribometers, partially reflecting the lubrication condition. In contrast, the electrical impedance provides rich information of magnitude and phase, which can be interpreted using equivalent circuit models, enabling more comprehensive measurements, including the variation of lubricant film thickness and the asperity (metal to metal) contact area. An accurate circuit model of the lubricated contact is critical as needed for the electrical impedance analysis. However, existing circuit models are hand derived and suited to interfaces with simple geometry, such as parallel plates, concentric and eccentric cylinders. Circuit model identification of lubricated contacts with complex geometry is challenging. This work takes the ball-on-disc lubricated contact in a Mini Traction Machine (MTM) as an example, where screws on the ball, grooves on the disc, and contact close to the disc edge make the overall interface geometry complicated. The electrical impedance spectroscopy (EIS) is used to capture its frequency response, with a group of load, speed, and temperature varied and tested separately. The results enable an identification of equivalent circuit models by fitting parallel resistor-capacitor models, the dependence on the oil film thickness is further calibrated using a high-accuracy optical interferometry, which is operated under the same lubrication condition as in the MTM. Overall, the proposed method is applicable to general lubricated interfaces for the identification of equivalent circuit models, which in turn facilitates in-situ tribo-contacts with electric impedance measurement of oil film thickness. It does not need transparent materials as optical techniques do, or structural modifications for piezoelectric sensor mounting as ultrasound techniques do

    Advanced Modeling of Lubricated Interfaces in General Curvilinear Grids

    Full text link
    Tackling fluid-flow problems involving intricate surface geometries has been the catalyst for a plethora of numerical investigations aimed at accommodating curved complex boundaries. An example is the application of body-fitted curvilinear coordinate transformation, where the one-to-one correspondence of grid points from the physical to the computational domain is achieved. In lubricated interfaces, such conversion is challenging due to the complex governing equations in the mapped-grid, the numerical instabilities exhibited by their non-linearities and the severity of operating conditions. The present contribution proposes a Reynolds-based, finite volume fluid-structure interaction (FSI) framework for solving thermal elastohydrodynamic lubrication (TEHL) problems mapped onto non-orthogonal curvilinear grids in the computational domain. We demonstrate how the strong conservation form of the pertinent governing equations can be expressed in three-dimensional curvilinear grids and discretised using finite volume method to ensure fluid-flow conservation and enforce mass-conserving cavitation conditions. Numerical and experimental benchmarks showcase the robustness and versatility of the proposed framework to simulate a diverse range of lubrication problems, hence achieving a predictive computational tool that would enable a shift towards tribology-aware design

    Thermal Conductivity and Flash Temperature

    No full text
    The thermal conductivity is a key property in determining the friction-induced temperature rise on the surface of sliding components. In this study, a Frequency Domain Thermoreflectance (FDTR) method is used to measure the thermal conductivity of a range of tribological materials (AISI 52100 bearing steel, silicon nitride, sapphire, tungsten carbide and zirconia). The FDTR technique is validated by comparing measurements of pure germanium and silicon with well-known values, showing discrepancies of less than 3%. For most of the tribological materials studied, the thermal conductivity values measured are reasonably consistent with values found in the literature. However the measured thermal conductivity of AISI 52100 steel (21 W/mK) is less than half the value cited in the literature (46 W/mK). Further bulk thermal conductivity measurements show that this discrepancy arises from a reduction in thermal conductivity of AISI 52100 due to through-hardening. The thermal conductivity value generally cited and used in the literature represents that of soft, annealed alloy, but through-hardened AISI 52100, which is generally employed in rolling bearings and for lubricant testing, appears to have a much lower thermal conductivity. This difference has a large effect on estimates of flash temperature and example calculations show that it increases the resulting surface temperatures by 30 to 50%. The revised value of thermal conductivity of bearing steel also has implications concerning heat transfer in transmissions. Keywords: Flash temperature; Thermal conductivity measurement; 52100 steel; Scuffing; Lubricatio

    A Combined Experimental and Theoretical Study on the Mechanisms Behind Tribocharging Phenomenon and the Influence of Triboemission

    No full text
    This work describes recent research into the mechanisms behind tribocharging and the influence of triboemission. The term tribocharging is a type of contact-induced electrification and refers to the transfer of charge between rubbing components. The term triboemission, on the other hand, refers to emission of electrons, ions and photons generated when surfaces are rubbed together. The understanding of tribocharging is of wide interest for several industrial applications and in particular the combination of tribocharging and triboemission may be important in lubricated contacts in the formation of boundary lubricant films. We report the use of a unique vacuum measurement system that enables to measure surface charge variations while simultaneously recording triboemission events during the sliding of a diamond tip on silica specimens. Results show for the first time that tribocharging and triboemission behavior are linked and depend on the surface wear. The contribution of contact-induced electrification to the charging of the surface is then described by means of density functional theory (DFT). Results give insight into the transfer of charge from the SiO2 amorphous surface (silica) to the C(111) surface (diamond ) and into the variation of charging during simulated sliding contact

    Macroscale Superlubricity and Polymorphism of Long-Chain n-Alcohols

    No full text
    Simple n-alcohols, such as 1-dodecanol, show anomalous film-forming and friction behaviour under elastohydrodynamic lubrication (EHL) conditions, as found inside bearings and gears. Using tribometer, diamond anvil cell (DAC), and differential scanning calorimetry (DSC) experiments, we show that liquid 1-dodecanol undergoes pressure-induced solidification when entrained into EHL contacts. Different solid polymorphs are formed inside the contact depending on the temperature and pressure conditions. Surprisingly, at moderate temperature and pressure, 1-dodecanol forms a polymorph that exhibits robust macroscale superlubricity. The DAC and DSC experiments show that superlubricity is facilitated by the formation of lamellar, hydrogen-bonded structures of hexagonally close-packed molecules, which promote interlayer sliding. This novel superlubricity mechanism is similar to that proposed for the two-dimensional materials commonly employed as solid lubricants, but it also enables the practical advantages of liquid lubricants to be maintained. When the pressure is increased, 1-dodecanol undergoes a polymorphic transformation into a phase that gives higher friction. The DAC and DSC experiments indicate that the high-friction polymorph is an orthorhombic crystal. The polymorphic transformation pressure coincides with the onset of dimple formation in the EHL films, revealing that the anomalous film shapes are caused by the formation of rigid orthorhombic crystals inside the contact. This is the first demonstration of macroscale superlubricity in an EHL contact lubricated by a non-aqueous liquid that arises from bulk effects rather than tribochemical transformations at the surfaces. Since the superlubricity observed here results from phase transformations, it is continuously self-replenishing and is insensitive to surface chemistry and topology. This discovery creates the possibility of implementing superlubricity in a wide range of machine components, which would result in enormous improvements in efficiency and durability.<br /
    corecore