310 research outputs found

    Issues Negotiation™ – investing in stakeholders

    Get PDF
    Consumers are increasingly demanding and less tolerant of organisations that fail to live up to their expectations. Organisations are expected to change their approach to business, giving the same priority to all stakeholders, with integrity and commitment. This means that the traditional approach to issues management where organisations “decide” on their plans, “dictate” them to stakeholders, and prepare their “defence”, will no longer be adequate. Issues Negotiaion™ offers business leaders a powerful alternative that builds trusting relationships, turning potentially negative issues into competitive advantage. It is a process that supports the organisation in its long-term growth

    Efficient Bayesian Nonparametric Modelling of Structured Point Processes

    Full text link
    This paper presents a Bayesian generative model for dependent Cox point processes, alongside an efficient inference scheme which scales as if the point processes were modelled independently. We can handle missing data naturally, infer latent structure, and cope with large numbers of observed processes. A further novel contribution enables the model to work effectively in higher dimensional spaces. Using this method, we achieve vastly improved predictive performance on both 2D and 1D real data, validating our structured approach.Comment: Presented at UAI 2014. Bibtex: @inproceedings{structcoxpp14_UAI, Author = {Tom Gunter and Chris Lloyd and Michael A. Osborne and Stephen J. Roberts}, Title = {Efficient Bayesian Nonparametric Modelling of Structured Point Processes}, Booktitle = {Uncertainty in Artificial Intelligence (UAI)}, Year = {2014}

    Bayesian Optimization for Probabilistic Programs

    Full text link
    We present the first general purpose framework for marginal maximum a posteriori estimation of probabilistic program variables. By using a series of code transformations, the evidence of any probabilistic program, and therefore of any graphical model, can be optimized with respect to an arbitrary subset of its sampled variables. To carry out this optimization, we develop the first Bayesian optimization package to directly exploit the source code of its target, leading to innovations in problem-independent hyperpriors, unbounded optimization, and implicit constraint satisfaction; delivering significant performance improvements over prominent existing packages. We present applications of our method to a number of tasks including engineering design and parameter optimization

    A large conformational change of the translocation ATPase SecA

    Get PDF
    The ATPase SecA mediates the posttranslational translocation of a wide range of polypeptide substrates through the SecY channel in the cytoplasmic membrane of bacteria. We have determined the crystal structure of a monomeric form of Bacillus subtilis SecA at a 2.2-Ă… resolution. A comparison with the previously determined structures of SecA reveals a nucleotide-independent, large conformational change that opens a deep groove similar to that in other proteins that interact with diverse polypeptides. We propose that the open form of SecA represents an activated state

    Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

    Full text link
    We propose a novel sampling framework for inference in probabilistic models: an active learning approach that converges more quickly (in wall-clock time) than Markov chain Monte Carlo (MCMC) benchmarks. The central challenge in probabilistic inference is numerical integration, to average over ensembles of models or unknown (hyper-)parameters (for example to compute the marginal likelihood or a partition function). MCMC has provided approaches to numerical integration that deliver state-of-the-art inference, but can suffer from sample inefficiency and poor convergence diagnostics. Bayesian quadrature techniques offer a model-based solution to such problems, but their uptake has been hindered by prohibitive computation costs. We introduce a warped model for probabilistic integrands (likelihoods) that are known to be non-negative, permitting a cheap active learning scheme to optimally select sample locations. Our algorithm is demonstrated to offer faster convergence (in seconds) relative to simple Monte Carlo and annealed importance sampling on both synthetic and real-world examples

    Rethinking Lifelong Learning within Current Contexts of Time and Space. EcCoWell2 Briefing Paper 7

    Get PDF
    No abstract available
    • …
    corecore