6 research outputs found

    Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis

    Get PDF
    Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers.publishedVersio

    Introduction of positron emission tomography into the Western Norwegian Health Region: Regional balance in resource utilization from 2009 to 2014

    Get PDF
    Background: The aim was to compare resource utilization across the four health trusts within the Western Norway Regional Health Authority since the establishment of positron emission tomography (PET) at Haukeland University Hospital in Bergen in 2009. Methods: Metadata from all PET examinations from 2009 to 2014 were automatically imported from the PET centre's central production database into a custom-developed database system, MDCake. A PET examination was defined as a procedure based on a single injection of radioactive tracer. The patients' place of residence and tentative diagnosis were coded based on the available clinical information. Results: The total number of PET examinations increased from 293 in 2009 to 1616 in 2014. The number of PET examinations per year increased across all diagnostic groups, but plateaued for lung cancer, gastrointestinal cancer and malignant melanoma since 2013. The number of examinations per capita was evenly distributed between the three northern health trusts with an average of 1260 PET studies per million inhabitants in 2014. However, patients residing in the most southerly health trust received between 44% (2010) and 27% (2014; P<0·001, repeated measures ANOVA) fewer examinations per capita per year. Conclusion: Centralized PET in the Western Norwegian health region meets the current clinical demand for patients residing in the three northern health trusts while patients from the most southern health trust receive approximately 30% fewer PET examinations. Access to specialized health care should be monitored routinely in order to identify inequalities in referral patterns and resource utilization

    Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    Get PDF
    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations

    Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis

    No full text
    Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers

    Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis

    No full text
    Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers

    Of rats and rocks: using pre-clinical PET imaging facilities in core analysis

    No full text
    Positron emission tomography (PET) is routinely used for medical imaging; a current surge in published geoscientific research utilizing this modality also infer increasing interest for in-situ PET imaging in core analysis. Excellent signal to noise ratio coupled with high temporal and spatial resolution suggest that PET might become the new method-of-choice for core analysis. Obstacles related to production, transfer and handling of radioactive fluids and gases must, however, be dealt with for PET to become a widely used core scale imaging technique. This paper describes an ongoing, true multidisciplinary collaboration, where pre-clinical PET imaging facilities are routinely used in core analysis to investigate dynamic fluid flow at high pressure conditions. We detail challenges and opportunities related to porous media research in established pre-clinical laboratory facilities designed for small-animal imaging, and demonstrate the significant potential of PET imaging in core scale analysis in a context related to long-term porous media carbon storage. Explicit imaging of several fluid phases is possible by PET imaging using a range of readily available radiotracers. Relevant radiotracers to carbon storage in porous media are e.g. the carbon radioisotope 11C and water-soluble tracer 18F. These are both short-lived tracers (20 - 110 min) and must be used in high doses of radiation, which present challenges related to safe transfer and handling. Although there are several obstacles to conduct advanced core analysis in hospital imaging facilities (some of which are detailed in this paper), significant advantages include trained personnel on-site to operate a local cyclotron, procedures in place to ensure safe and efficient transfer of short-lived radiopharmaceuticals from the cyclotron, and advanced image analysis capabilities available. Cyclotrons are widely available worldwide (currently more than 1200 operating cyclotrons), often located in close proximity to medical and pre-clinical imaging facilities and academic institutions. Similar collaborations may therefore also be possible elsewhere, reducing the need for allocated geophysical PET-scanners and lowering the threshold for routinely using PET imaging in core analysis
    corecore