73 research outputs found

    Fast Simulation of Vehicles with Non-deformable Tracks

    Full text link
    This paper presents a novel technique that allows for both computationally fast and sufficiently plausible simulation of vehicles with non-deformable tracks. The method is based on an effect we have called Contact Surface Motion. A comparison with several other methods for simulation of tracked vehicle dynamics is presented with the aim to evaluate methods that are available off-the-shelf or with minimum effort in general-purpose robotics simulators. The proposed method is implemented as a plugin for the open-source physics-based simulator Gazebo using the Open Dynamics Engine.Comment: Submitted to IROS 201

    Evaluation of the importance of spin-orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient "on-the-fly" ab initio semiclassical approximation

    Get PDF
    We propose to measure the importance of spin-orbit couplings (SOCs) in the nonadiabatic molecular quantum dynamics rigorously with quantum fidelity. To make the criterion practical, quantum fidelity is estimated efficiently with the multiple-surface dephasing representation (MSDR). The MSDR is a semiclassical method that includes nuclear quantum effects through interference of mixed quantum-classical trajectories without the need for the Hessian of potential energy surfaces. Two variants of the MSDR are studied, in which the nuclei are propagated either with the fewest-switches surface hopping or with the locally mean field dynamics. The fidelity criterion and MSDR are first tested on one-dimensional model systems amenable to numerically exact quantum dynamics. Then, the MSDR is combined with "on-the-fly" computed electronic structure to measure the importance of SOCs and nonadiabatic couplings (NACs) in the photoisomerization dynamics of CH2NH2+ considering 20 electronic states and in the collision of F + H2 considering six electronic states.Comment: 9 pages, 3 figures, submitted to J. Chem. Phy

    Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene

    Get PDF
    Recent experiments have confirmed the importance of nuclear quantum effects even in large biomolecules at physiological temperature. Here we describe how the path integral formalism can be used to describe rigorously the nuclear quantum effects on equilibrium and kinetic properties of molecules. Specifically, we explain how path integrals can be employed to evaluate the equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature dependence of the rate constant. The methodology is applied to the [1,5] sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature dependence of the rate constant confirm the importance of tunneling and other nuclear quantum effects as well as of the anharmonicity of the potential energy surface. Moreover, previous results on the KIE were improved by using a combination of a high level electronic structure calculation within the harmonic approximation with a path integral anharmonicity correction using a lower level metho

    Self-Supervised Depth Correction of Lidar Measurements from Map Consistency Loss

    Full text link
    Depth perception is considered an invaluable source of information in the context of 3D mapping and various robotics applications. However, point cloud maps acquired using consumer-level light detection and ranging sensors (lidars) still suffer from bias related to local surface properties such as measuring beam-to-surface incidence angle, distance, texture, reflectance, or illumination conditions. This fact has recently motivated researchers to exploit traditional filters, as well as the deep learning paradigm, in order to suppress the aforementioned depth sensors error while preserving geometric and map consistency details. Despite the effort, depth correction of lidar measurements is still an open challenge mainly due to the lack of clean 3D data that could be used as ground truth. In this paper, we introduce two novel point cloud map consistency losses, which facilitate self-supervised learning on real data of lidar depth correction models. Specifically, the models exploit multiple point cloud measurements of the same scene from different view-points in order to learn to reduce the bias based on the constructed map consistency signal. Complementary to the removal of the bias from the measurements, we demonstrate that the depth correction models help to reduce localization drift. Additionally, we release a data set that contains point cloud data captured in an indoor corridor environment with precise localization and ground truth mapping information.Comment: Accepted to RA-L 2023: https://www.ieee-ras.org/publications/ra-

    Data-driven Policy Transfer with Imprecise Perception Simulation

    Full text link
    The paper presents a complete pipeline for learning continuous motion control policies for a mobile robot when only a non-differentiable physics simulator of robot-terrain interactions is available. The multi-modal state estimation of the robot is also complex and difficult to simulate, so we simultaneously learn a generative model which refines simulator outputs. We propose a coarse-to-fine learning paradigm, where the coarse motion planning is alternated with imitation learning and policy transfer to the real robot. The policy is jointly optimized with the generative model. We evaluate the method on a real-world platform in a batch of experiments.Comment: Submitted to IROS 2018 with RAL optio

    MonoForce: Self-supervised learning of physics-aware grey-box model for predicting the robot-terrain interaction

    Full text link
    We introduce an explainable, physics-aware, and end-to-end differentiable model which predicts the outcome of robot-terrain interaction from camera images. The proposed MonoForce model consists of a black-box module, which predicts robot-terrain interaction forces from the onboard camera, followed by a white-box module, which transforms these forces through the laws of classical mechanics into the predicted trajectories. As the white-box model is implemented as a differentiable ODE solver, it enables measuring the physical consistency between predicted forces and ground-truth trajectories of the robot. Consequently, it creates a self-supervised loss similar to MonoDepth. To facilitate the reproducibility of the paper, we provide the source code. See the project github for codes and supplementary materials such as videos and data sequences

    Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation

    Full text link
    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping (FSSH) or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schr\"{o}dinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used to measure the importance of other terms present in the molecular Hamiltonian, such as diabatic couplings, spin-orbit couplings, or couplings to external fields, and to evaluate the accuracy of quantum dynamics with an approximate nonadiabatic Hamiltonian. The method is tested on three model problems introduced by Tully, on a two-surface model of dissociation of NaI, and a three-surface model including spin-orbit interactions. An example is presented that demonstrates the importance of often-neglected second-order nonadiabatic couplings.Comment: 14 pages, 4 figures, submitted to J. Chem. Phy

    Path integral evaluation of equilibrium isotope effects

    Get PDF
    A general and rigorous methodology to compute the quantum equilibrium isotope effect is described. Unlike standard approaches, ours does not assume separability of rotational and vibrational motions and does not make the harmonic approximation for vibrations or rigid rotor approximation for the rotations. In particular, zero point energy and anharmonicity effects are described correctly quantum mechanically. The approach is based on the thermodynamic integration with respect to the mass of isotopes and on the Feynman path integral representation of the partition function. An efficient estimator for the derivative of free energy is used whose statistical error is independent of the number of imaginary time slices in the path integral, speeding up calculations by a factor of 60 at 500 K. We describe the implementation of the methodology in the molecular dynamics package Amber 10. The method is tested on three [1,5] sigmatropic hydrogen shift reactions. Because of the computational expense, we use ab initio potentials to evaluate the equilibrium isotope effects within the harmonic approximation, and then the path integral method together with semiempirical potentials to evaluate the anharmonicity corrections. Our calculations show that the anharmonicity effects amount up to 30% of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering and coworkers, confirming the accuracy of the most recent measurement on 2,4,6,7,9-pentamethyl-5-(5,5-2^2H2_2)methylene-11,11a-dihydro-12H-naphthacene as well as concerns about compromised accuracy, due to side reactions, of another measurement on 2-methyl-10-(10,10-2^2H2_2)methylenebicyclo[4.4.0]dec-1-ene.Comment: 14 pages, 8 figures, 6 table

    Teachers in concordance for pseudo-labeling of 3D sequential data

    Full text link
    Automatic pseudo-labeling is a powerful tool to tap into large amounts of sequential unlabeled data. It is specially appealing in safety-critical applications of autonomous driving, where performance requirements are extreme, datasets are large, and manual labeling is very challenging. We propose to leverage sequences of point clouds to boost the pseudolabeling technique in a teacher-student setup via training multiple teachers, each with access to different temporal information. This set of teachers, dubbed Concordance, provides higher quality pseudo-labels for student training than standard methods. The output of multiple teachers is combined via a novel pseudo label confidence-guided criterion. Our experimental evaluation focuses on the 3D point cloud domain and urban driving scenarios. We show the performance of our method applied to 3D semantic segmentation and 3D object detection on three benchmark datasets. Our approach, which uses only 20% manual labels, outperforms some fully supervised methods. A notable performance boost is achieved for classes rarely appearing in training data.Comment: This work has been submitted to the IEEE for publicatio
    • …
    corecore