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We propose to measure the importance of spin-orbit couplings (SOCs) in the nonadiabatic molecular
quantum dynamics rigorously with quantum fidelity. To make the criterion practical, quantum fidelity
is estimated efficiently with the multiple-surface dephasing representation (MSDR). The MSDR is a
semiclassical method that includes nuclear quantum effects through interference of mixed quantum-
classical trajectories without the need for the Hessian of potential energy surfaces. Two variants of
the MSDR are studied, in which the nuclei are propagated either with the fewest-switches surface
hopping or with the locally mean field dynamics. The fidelity criterion and MSDR are first tested on
one-dimensional model systems amenable to numerically exact quantum dynamics. Then, the MSDR
is combined with “on-the-fly” computed electronic structure to measure the importance of SOCs and
nonadiabatic couplings in the photoisomerization dynamics of CH2NH+

2 considering 20 electronic
states and in the collision of F + H2 considering six electronic states. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4738878]

I. INTRODUCTION

Nonadiabatic couplings (NACs) originating in the Born-
Oppenheimer separation of motion of electrons and nuclei
often play an important role in the molecular dynamics.1 In
photochemistry, NACs are responsible for radiationless decay
of the electronically excited states by a process called inter-
nal conversion.2, 3 In chemical reaction dynamics, they may
affect branching ratios of product channels or allow for re-
activity of otherwise nonreactive states, when the transition
from a nonreactive potential energy surface (PES) to a reac-
tive PES is induced by the motion of nuclei.4, 5 In some cases,
transitions between PESs may be induced by another type
of couplings called spin-orbit couplings (SOCs), which cou-
ple the electronic spin with angular momentum.6 Relativistic
in origin, SOCs become increasingly important in molecules
containing heavy elements. Nevertheless, SOCs often play a
role also in molecules composed of light elements, e.g., vari-
ous chromophores or DNA bases.7 In photochemistry, SOCs
cause radiationless transitions between PESs of different mul-
tiplicity called intersystem crossings, which are responsible
for the phosphorescence or emergence of triplet intermedi-
ates in photochemical reactions.8–10 Similarly to NACs, SOCs
may affect chemical reactions even when no photoexcitation
is involved.11, 12

Even though intersystem crossing is typically slower than
internal conversion in molecules composed of light elements,
in some cases both effects may occur on a comparable time
scale.13–16 Therefore, there is a need for a rigorous criterion
of the importance of SOCs in accurate quantum nonadiabatic
simulations. Knowing in advance which PESs and which cou-

a)Electronic mail: jiri.vanicek@epfl.ch.

plings are important for given initial conditions may speed
up a simulation and avoid costly calculations of additional
PESs. Below, we propose and test a criterion of importance of
SOCs which is based on the quantum fidelity.17 In a similar
manner, fidelity was already used to measure nondiabaticity18

or nonadiabaticity19, 20 of quantum dynamics. However, di-
rect evaluation of fidelity requires knowledge of the quantum
state evolved with the complete Hamiltonian including SOCs
and consequently is impractical as a guide for quantum sim-
ulations. Fortunately, there exists a fast semiclassical method
to compute quantum fidelity, called the multiple-surface de-
phasing representation (MSDR).18, 20 Evaluation of the im-
portance of SOCs with the MSDR is the main focus of this
work.

Originally, the MSDR was introduced to measure either
the nonadiabaticity or nondiabaticity of the quantum molecu-
lar dynamics.18, 20 Roughly speaking, “nondiabaticity” is the
difference between the diabatic quantum dynamics (i.e., quan-
tum dynamics in which the diabatic coordinate couplings
between diabatic electronic surfaces are neglected) and the
fully coupled quantum dynamics. Similarly, “nonadiabatic-
ity” is the difference between the adiabatic quantum dynam-
ics (i.e., quantum dynamics in which the nonadiabatic mo-
mentum couplings between adiabatic electronic surfaces are
neglected) and the fully coupled quantum dynamics. In both
cases the “difference” between the two types of dynamics is
measured by the decay of the overlap of the time-dependent
molecular wave functions evolved using the two types of dy-
namics. In the same manner, the importance of SOCs may
be evaluated either in: (1) the basis which is diabatic with
respect to SOCs, meaning that the Hamiltonian matrix ex-
pressed in this basis does not contain any spin-orbit-related
couplings that depend on the nuclear momentum, or (2) in the
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basis which is adiabatic with respect to SOCs, meaning that
the only spin-orbit-related couplings present in the Hamilto-
nian depend on the nuclear momentum. The basis which is
diabatic with respect to SOCs is usually more suitable when
SOCs represent only a small perturbation, whereas the basis
which is adiabatic with respect to SOCs is more appropriate in
case of strong coupling. Independently of the adiabaticity or
diabaticity with respect to SOCs, the basis may be adiabatic
or diabatic with respect to couplings originating in the Born-
Oppenheimer separation of motion of electrons and nuclei.
Below, we use exclusively the basis which is diabatic with re-
spect to SOCs. When analyzing the importance of SOCs, we
always evaluate the importance of the full spin-orbit Hamil-
tonian which may include diagonal terms as well. Neverthe-
less, the fidelity criterion and MSDR may be used also in the
fully adiabatic basis of spin-orbit states, which is employed,
for example, in the mixed quantum-classical code SHARC.21

It is important to note that spin-orbit-related couplings have
different meaning in the two basis sets. In the diabatic ba-
sis with respect to SOCs, when the full spin-orbit Hamilto-
nian is considered as a perturbation, SOCs reflect faithfully
the importance of the spin-orbit interaction in the system. In
the adiabatic basis with respect to SOCs, on the other hand,
the spin-orbit interaction modifies the PESs themselves and
the lack of importance of the offdiagonal spin-orbit-related
couplings does not necessarily mean that the spin-orbit inter-
action is unimportant.

The MSDR is a generalization to nonadiabatic dynam-
ics of the dephasing representation (DR),22–24 derived for dy-
namics on a single surface using the Van Vleck propagator or
the linearization of the path integral.25 In the single-surface
setting, the DR is closely related to the semiclassical pertur-
bation approximation of Smith, Hubbard, and Miller26, 27 and
to the phase averaging of Mukamel.28 Its applications include
evaluations of the stability of quantum dynamics23, 24, 29–31 and
calculations of electronic spectra.28, 32–37

While the MSDR is not a method for general dynamics, it
can be used to compute all quantities which can be expressed
in terms of quantum fidelity amplitude. Weaker generality and
semiclassical nature give the MSDR some advantages in com-
parison to general methods for nonadiabatic dynamics.

The main advantage of the MSDR compared to wave
packet methods is that the number of trajectories needed
for convergence of MSDR does not scale exponentially with
the number of degrees of freedom.38 Therefore, the MSDR
may be applied to problems with dimensionality beyond
the scope of even the most advanced methods for nonadia-
batic quantum dynamics such as the multi-configuration time-
dependent Hartree methods.39–42 Similarly to other semiclas-
sical methods,43–50 the MSDR includes some quantum ef-
fects on the nuclear motion. The advantage of MSDR in
comparison to most other semiclassical approaches is that
the MSDR does not require the Hessian of the potential en-
ergy, which is often the most expensive part of semiclassi-
cal calculations (see, e.g., Ref. 51). In terms of the computa-
tional cost per trajectory, the MSDR thus falls into the cate-
gory of methods in which nuclei are treated classically such
as surface hopping methods,52–54 and other methods based
on the mixed quantum-classical Liouville equation,55–63 or

methods obtained by linearization of the path integral expres-
sion for the quantum propagator.64, 65 (Costs of current imple-
mentations of the MSDR are essentially the costs of a mean
field or surface hopping dynamics. Nevertheless, in princi-
ple, the MSDR may be combined with a propagation scheme
based directly on the mixed quantum-classical Liouville
equation, which is typically more expensive but also more
accurate.)

The outline of the paper is as follows: Section II starts
by introducing the fidelity criterion of importance of SOCs
and by defining the spin-orbit Hamiltonian. This is followed
by a brief derivation of the MSDR, and the description of
the propagation scheme and the algorithm. The section ends
with the computational details. In Sec. III, the fidelity crite-
rion and MSDR are tested using one-dimensional model sys-
tems which allow for numerically exact quantum solution.
Subsequently, the MSDR is combined with “on-the-fly” com-
puted ab initio electronic structure and applied to evaluate the
importance of SOCs and NACs in the photoisomerization of
CH2NH2

+ and in the collision of F + H2. Section IV con-
cludes the paper.

II. THEORY

A. Fidelity as a measure of importance of spin-orbit
coupling terms

Following our work on the nondiabaticity18 and
nonadiabaticity20 of the molecular dynamics we base the
quantitative criterion of importance of SOCs on quantum
fidelity FQM between molecular quantum states propagated
with and without SOCs. More precisely,

FQM(t) = |fQM(t)|2 = |〈ψ0(t)|ψε(t)〉|2, (1)

where fQM is the quantum fidelity amplitude, |ψ0(t)〉
= e−iĤ0t/¯ |ψ(0)〉 is the quantum state of the molecule
evolved using the nonadiabatic Hamiltonian Ĥ0 which does
not include SOCs of interest and |ψε(t)〉 = e−iĤε t/¯ |ψ(0)〉
is the quantum state evolved using the fully coupled nona-
diabatic Hamiltonian Ĥε = Ĥ0 + εV̂. In the last expression,
V̂ = ĤSO contains SOCs of interest and ε controls the extent
of perturbation. (Bold face denotes n × n matrices acting on
the Hilbert space spanned by n electronic states, hat ˆdenotes
nuclear operators. In general, the superscript 0 or ε desig-
nates the Hamiltonian with which the object was propagated.)
When FQM ≈ 1, |ψ0(t)〉 is close to |ψε(t)〉 and SOCs do not
influence the dynamics significantly. On the other hand, when
FQM � 1, SOCs are important and should be taken into ac-
count in an accurate quantum calculation. The advantage of
the fidelity criterion is that, in addition to population transfer
between PESs (which is a standard dynamical measure of the
importance of couplings), fidelity can detect subtle effects on
the dynamics caused by the displacement and interference on
a single PES (see Ref. 20 for details).

B. Spin-orbit Hamiltonian

In principle, any spin-orbit coupling Hamiltonian ĤSO

may be used. In this work, model potentials are used in
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one-dimensional systems. In case of the photoisomerization
of CH2NH2

+ and collision of F + H2, elements of ĤSO are
computed with the Breit-Pauli Hamiltonian66

Ĥ BP =
∑
j,J

ZJ (q̂jJ × p̂j ) · ŝj

2c2|qjJ |3

−
∑
j �=k

[
(q̂kj × p̂j ) · ŝj

2c2|qjk|3 + (q̂jk × p̂k) · ŝj

c2|qjk|3
]

, (2)

where q̂jJ = (q̂j − Q̂J ) is the difference of position vectors
of electron j and nucleus J, q̂jk = (q̂j − q̂k) is the differ-
ence of position vectors of electron j and k, p̂j is the mo-
mentum of electron j, and ŝj is the spin of electron j. Ex-
ceptionally, since Ĥ BP is not expressed in any basis yet, in
Eq. (2) (and only there) hats denote both electronic and nu-
clear operators.

C. MSDR

Here we will only summarize the theory of MSDR;
the full derivation may be found in Ref. 20. The deriva-
tion starts with a quantum fidelity amplitude expression gen-
eralized to the Hilbert space given by the tensor product
Cn ⊗ L2

(
RD

)
,24

fQM (t) = Tr(e−iĤε t/¯ · ρ̂ init · e+iĤ0t/¯), (3)

where ρ̂ init is the density operator of the initial state. Ex-
pressing fQM in the interaction picture and partially Wigner
transforming67 the resulting equation over nuclear degrees of
freedom yields an alternative exact expression

fQM (t) = h−DTre

∫
d2DXρ init

W (X) · (T e−iε
∫ t

0 V̂I(t ′)dt ′/¯)W,

(4)

where X denotes the point (Q, P) in the 2D-dimensional
nuclear phase space, Tre is the trace over electronic de-
grees of freedom, T is the time-ordering operator, and
V̂I (t) is the perturbation in the interaction picture given
by Ĥ0. The first approximation consists in replacing
the Wigner transform of a product of operators in the
Taylor expansion of the time-ordered exponential in
Eq. (4) by the product of Wigner transforms of these oper-
ators. Recognizing the resulting sum as a Taylor expansion
of another exponential, this approximation can be expressed
succinctly as

(T e−iε
∫ t

0 V̂I(t ′)dt ′/¯)W 	 T e−iε
∫ t

0 VI
W(X,t ′)dt ′/¯. (5)

To evaluate this expression, the time evolution of VI
W (X, t)

has to be known. The second approximation involves replac-
ing the exact evolution by a mixed quantum-classical (MQC)
propagation scheme described below, leading to the final ex-
pression for the MSDR of fidelity amplitude,

fMSDR(t) = 〈T e−iε
∫ t

0 VI
W,MQC(X,t ′)dt ′/¯〉ρ init

W (X)

= h−DTre

∫
d2DXρ init

W (X) · T e−iε
∫ t

0 VI
W,MQC(X,t ′)dt ′/¯.

(6)

D. Propagation scheme

The MQC equation25, 56, 68–72 for the evolution of the den-
sity matrix is given by

∂ρW,MQC

∂t
= − i

¯
[HW, ρW,MQC]

+ 1

2
({HW, ρW,MQC} − {ρW,MQC, HW}), (7)

where the explicit dependence of ρW,MQC on time and on the
nuclear phase-space coordinate X was omitted for clarity. The
propagation equation for VI

W,MQC (X, t), which is the last in-
gredient needed in our method, differs from Eq. (7) only by
the sign of the time derivative. Therefore Eq. (6) together with
Eq. (7) define the MSDR. Several numerical approaches ex-
ist that solve Eq. (7) in terms of “classical” trajectories X(t).
However, since trajectory-based methods for solving Eq. (7)
are still relatively complicated, the MSDR is in practice im-
plemented using one of two schemes which further approx-
imate Eq. (7). The common feature of the two approxima-
tions is that all elements of ρW (X, t) are propagated using
the same PES (which may, nevertheless, differ for different
trajectories). The first approach20 approximates Eq. (7) as

∂ρW,LMFD

∂t
= − i

¯
[HW, ρW,LMFD]

+ ∂ρW,LMFD

∂P

〈
∂HW

∂Q

〉
e

− ∂ρW,LMFD

∂Q

P

M
, (8)

where 〈A〉e = Tre
(
ρe · A

)
is a partial average of A over the

electronic subspace. This approach was called the locally
mean field dynamics (LMFD) in Ref. 20, where it was derived
simply by invoking the locally mean field approximation. As
pointed out in Ref. 20, the LMFD turns out to be nothing else
than the dynamics of a swarm of trajectories, each of which
is propagated with the Ehrenfest dynamics. The second ap-
proach employs the physically motivated fewest-switches sur-
face hopping (FSSH) scheme,52 where the matrix elements of
the density operator ρW,FSSH are (in the adiabatic basis) com-
puted using Eq. (11) of Ref. 52.

E. Algorithm

The details of the general implementation of the MSDR
algorithm are given in Ref. 20. In this work, we consider only
initial states for which the “conditional” electronic density
matrix is pure for all X and hence the initial density matrix
can be written as the tensor product

ρ init
W (X) = ρ init (X) cinit (X) ⊗ cinit (X)† , (9)

where ρ init (X) := Treρ init
W (X) and cinit (X) is the initial elec-

tronic wave function for nuclei located at X. In practice, Ntraj

phase space points are sampled from a scalar nuclear density
ρ init(X) and a vector cinit (X) is attributed to each of the gen-
erated phase space points. In the case of LMFD, this deter-
mines the initial condition completely. In the case of FSSH,
one also needs to select the initial surface randomly and sepa-
rately for each trajectory according to the following prescrip-
tion: For a trajectory starting at X, the probability for its initial
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surface to be surface j is given by |cinit
j (X)|2. The trajectories

are then propagated with H0
W [because, ultimately, we prop-

agate VI
W,MQC (X, t) in the interaction picture given by H0

W]
by using either the LMFD or FSSH dynamics. It is advanta-
geous that for states (9), when the LMFD or FSSH dynam-
ics is used, Eq. (6) simplifies to the weighted phase space
average

fMSDR (t) = 〈c0 (X, t)† · cε (X, t)〉ρinit(X). (10)

In Eq. (10), the wave function c0 (X, t) is obtained auto-
matically from the LMFD or FSSH dynamics. Analogously,
cε (X, t) solves the Schrödinger equation

∂cε (X, t)

∂t
= − i

¯
Hε

W(X0(t)) · cε (X, t) (11)

for a single discrete electronic degree of freedom with a time-
dependent Hamiltonian Hε

W(t) := Hε
W(X0(t)) (i.e., in the La-

grangian reference frame given by H0
W) and with the initial

condition cε(X, 0) = cinit (X). In Eq. (11), X0(t) is the phase
space point resulting from the evolution of the initial phase
space point X for time t with H0

W, using either the LMFD or
FSSH dynamics.

F. Computational details

All quantum calculations were performed using the
second-order split-operator algorithm.73 The LMFD or FSSH
dynamics were done using the second-order symplectic Ver-
let integrator.74 The Schrödinger equation for the discrete
“electronic” degree of freedom was solved using the unitary
propagator U(X, t, t + �t) = e−iHW(X)�t/¯. Ab initio calcula-
tions were performed using MOLPRO 2010.1 (Ref. 75) and
Columbus 5.9.2.76

III. RESULTS

A. Comparison of the MSDR with the numerically
exact quantum dynamics

In order to test the utility of quantum fidelity as a measure
of the importance of SOCs and the performance of the MSDR
in comparison to the numerically exact quantum dynamics we
use three one-dimensional model systems. Results are shown
in Fig. 1.

The PESs and couplings of model A are shown in the
right part of Fig. 1(a). Both Hamiltonians Ĥ0 and Ĥε are
expressed in the diabatic basis with respect to both SOCs
and couplings originating in the Born-Oppenheimer separa-
tion of motion of electrons and nuclei. Both Hamiltonians
contain three PESs, of which the lower two are identical to
the PESs of Tully’s single avoided crossing model.52 The
third PES is flat with constant energy E = 0.15 a.u. In both
Hamiltonians, the lower two PESs are coupled by the same
coupling term V12 as in the original single avoided cross-
ing model. Additionally, in Ĥε (but not in Ĥ0), the highest
PES is coupled to the lower two PESs with V13 = V ∗

31 = V23

= V ∗
32 = (1 + i)[C exp(−DQ2)], where C = 0.005 and D

= 1.0. A more general, complex form was chosen to emu-
late spin-orbit coupling terms, which may also be complex-

valued. The initial state is a Gaussian wave packet (GWP) lo-
cated on the lowest energy PES with the mean kinetic energy
T0 = 0.025 a.u. As can be seen in Fig. 1(a), quantum fidelity
FQM decays substantially (by more than 50%), signifying the
importance of V13 and V23 in the dynamics. The decay of FQM

is accurately reproduced by the MSDR using both the LMFD
and FSSH dynamics. On the other hand, the decay of the sur-
vival probability P1+2,QM = 1 − P3,QM is very small and the
final probability P3,QM of finding the system on the third PES
is less than 1%. This demonstrates that the survival proba-
bility P1+2,QM may be a poor measure of the importance of
couplings between PESs. More refined criteria, such as the fi-
delity criterion, are needed to measure the influence of SOCs.
(Note that in this specific case, strong effects of couplings of
the first two PESs to the third PES may be inferred from con-
sidering the probabilities P1 and P2 separately. However, for
that it is necessary to run the dynamics twice—once with cou-
plings to the third surface and once without the couplings. To
use the fidelity criterion approximated by the MSDR only one
simulation is sufficient.)

Model B shown in Fig. 1(b) is based on the two-surface
Tully’s double avoided crossing model.52 It is also expressed
in the diabatic basis with respect to both SOCs and cou-
plings originating in the Born-Oppenheimer separation of
motion of electrons and nuclei. The third additional sur-
face is described by the equation V33 = FQ2 + G, where
F = −2 × 10−5 and G = 0.06. The coupling term V23 = V ∗

32
= iI exp

(−JQ2
)

(with I = 0.003 and J = 0.001) is present
only in Ĥε . As can be seen in the right part of Fig. 1(b), the
coupling term V23 is relatively weak but widely spread, re-
sembling closely SOCs typically seen in molecular dynam-
ics. The initial state is a GWP located on the second lowest-
energy PES with mean kinetic energy T0 = 0.368 a.u. Again,
the decay of FQM is closely followed by both implementa-
tions of the MSDR. This time, even P1+2,QM follows FQM

relatively well. Still, the approximate MSDR method gives a
slightly more accurate picture of the influence of SOCs on the
dynamics.

Model C [Fig. 1(c)], inspired by Tully’s extended cou-
pling model,52 demonstrates that the fidelity criterion detects
the importance of SOCs even in cases where no significant
transition of the probability density between surfaces occurs.
The PESs and couplings are given by

V11 (Q) = −A,

V22 (Q ≥ 0) = A + B exp (−CQ) ,

V22 (Q < 0) = A + B[2 − exp (CQ)],

V12 (Q ≥ 0) = B[2 − exp (−CQ)],

V12 (Q < 0) = B exp (CQ) ,

where A = 10, B = 0.1, and C = 0.9. The real-valued coupling
term V12 is present in Ĥε but not in Ĥ0. (Note that when the
coupling term is purely imaginary, the results are exactly iden-
tical.) As can be seen in Fig. 1(c), for a low energy wavepacket
the wavefunctions propagated with Ĥ0 and Ĥε are very dif-
ferent. Indeed, fidelity decays towards zero. On the other
hand, the survival probability P1 never decays by more than
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FIG. 1. Importance of SOCs in the nonadiabatic dynamics: comparison with the numerically exact quantum dynamics on model systems. Left panels compare
the quantum fidelity (FQM) with the MSDR (FMSDR) and with the quantum survival probability (PQM). Right panels show the corresponding diabatic PESs and
couplings Vjj (Q) as well as initial [ψ(0)] and final [ψ0(tf) and ψε (tf)] wave functions evolved with Ĥ0 and Ĥε , respectively. In all three models, the initial
state was the GWP ψ(q) = 1

σ
√

π
exp[−(Q − Q0)2/2σ 2 + P0(Q − Qo)/¯] with the mass equal to 2000 a.u. (a) Coupling terms V13 = V23, containing both real

and imaginary parts, result in a very low decay of PQM which does not correspond to the substantial decay of FQM. Only the lowest-energy PES was occupied
initially by a GWP with Q0 = −15 a.u., P0 = 10 a.u., and σ = 2.83 a.u. (b) Extensive but relatively weak purely imaginary spin-orbit coupling term causes
considerable decay of both FQM and PQM. Only the second lowest-energy PES was occupied initially by a GWP with Q0 = −15 a.u., P0 = 38.36 a.u., and σ

= 0.74 a.u. (c) The coupling term V12 causes decay of FQM towards zero without affecting PQM. Only the lowest-energy PES was occupied initially by a GWP
with Q0 = −20 a.u., P0 = 0.2 a.u., and σ = 3.41 a.u.

6 × 10−5. Even though the model is slightly artificial (in that
the PESs are considerably coupled, despite a large energy
difference between them), it clearly demonstrates the plau-
sibility of situations in which the dynamical importance
of SOCs would be undetectable if measured with the sur-

vival probability as a criterion. Finally, Fig. 1(c) shows
that the MSDR still closely follows the quantum result.
[Since Ĥ0 is uncoupled, both the LMFD and FSSH dynam-
ics are equivalent. Therefore, only the FSSH result is shown
in Fig. 1(c).]
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B. On-the-fly ab initio photoisomerization
dynamics of CH2NH2

+

As the first on-the-fly ab initio application of the MSDR,
we examined the importance of SOCs and NACs in the quan-
tum dynamics of the second excited singlet state of CH2NH2

+

using the SA5,5-CASSCF(6,4)/6-31G* method. The time
step of the FSSH dynamics was equal to ∼0.2 fs. In total,
five lowest-energy singlet states and 15 lowest-energy triplet
states (five states for each MS = 1, 0, −1) were considered
in the simulation. To evaluate the nonadiabaticity, the un-
perturbed Hamiltonian Ĥ0 did not contain any couplings be-
tween surfaces and the perturbed Hamitonian Ĥε contained
NACs between singlet states. To evaluate the importance of
SOCs, Ĥ0 contained only NACs between singlet states while
Ĥε contained NACs between singlet states and SOCs between
all 20 considered surfaces. The initial state was the vibra-
tional ground state of the ground electronic PES computed
in the harmonic approximation. (The harmonic approxima-
tion was used only to compute the initial state, and not for
the propagation itself.) This wave packet was placed on the
second excited singlet PES (in the basis diabatic with respect
to SOCs and adiabatic with respect to couplings originat-
ing in the Born-Oppenheimer separation of motion of elec-
trons and nuclei). Immediately after excitation, when NACs
were included in the dynamics, the system quickly decayed
to the first excited state and subsequently to the ground state.
Three main pathways were observed during the first 100 fs,
in agreement with experimental observations and previous
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1 
- 
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FIG. 2. Importance of the SOCs and NACs in the dynamics starting on the
second excited electronic state of CH2NH2

+ evaluated with the MSDR com-
bined with the FSSH dynamics. Top: Fast decay of FNAC signifies the im-
portance of NACs, whereas a very slow decay of FSOC shows that SOCs
may be safely neglected. Bottom: Swarm of 72 trajectories representing the
wave packet during the photoisomerization dynamics (including NACs but
not SOCs) of CH2NH2

+ immediately after excitation and ∼16 fs after ex-
citation. Configurations on the first, second, and third lowest-energy excited
states are depicted with yellow, red, and pink hydrogen atoms, respectively.
Configurations on the ground state have grey hydrogens.

calculations:77–79 (1) photoisomerization leading to the hot
ground state CH2

+, (2) bi-pyramidalisation leading to disso-
ciation into CH2NH2

+ and NH2, and (3) release of H2.
Fast decay of fidelity FNAC, which can be seen in Fig. 2,

demonstrates the vast importance of NACs in the quantum dy-
namics of photoexcited CH2NH2

+. On the other hand, SOCs
are not important in this dynamics as signified by the very
slow decay of fidelity FSOC.

C. On-the-fly ab initio collision of F + H2

The collision of F + H2 represents a system where SOCs
are known to be important at least at low energies.12, 80 In or-
der to check the ability of the MSDR to detect the importance
of SOCs, we have applied it together with on-the-fly com-
puted electronic structure using the SA3-CASSCF(9,10)/6-
31+G* method. The (9,10) active space was chosen because it
is known to produce qualitatively correct smooth PESs for any
orientation of H2 axis.81 The time step of the FSSH dynamics
was equal to ∼0.2 fs. Six lowest-energy doublet states were
considered in the simulation (three states with MS = 1/2 and
three states with MS = −1/2). The initial state was placed ei-
ther on the electronic ground state or on the first excited state
with MS = 1/2 in the basis diabatic with respect to SOCs and
adiabatic with respect to couplings originating in the Born-
Oppenheimer separation of motion of electrons and nuclei.
(The degeneracy of p states of F was removed by H2 at a dis-
tance of ∼6 Å.) The molecule of H2 was in the vibrational and
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FIG. 3. Importance of SOCs and NACs in the collision of F + H2 evalu-
ated with the MSDR combined with the FSSH dynamics. Top: The decays of
Fgrnd_SOC and Fexc_SOC signify the importance of SOCs, especially in the col-
lision initiated on the first excited electronic state. NACs for both excited and
ground state dynamics are as important as SOCs for the ground state dynam-
ics. Bottom: Swarm of 64 trajectories representing the wave packet (initially
located on the first excited PES) during the collision (including NACs but not
SOCs) of F + H2 at t = 0 fs and t ∼ 48 fs. Configurations on the first and
second lowest-energy excited doublet states are depicted with yellow and red
hydrogen atoms, respectively. Configurations on the ground state have grey
hydrogens.

Downloaded 10 Aug 2012 to 128.178.55.117. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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rotational ground state with uniformly random orientation of
the molecular axis. Translational degrees of freedom of F and
H2 were sampled from GWPs with the mean total kinetic en-
ergy of the collision Ek = 0.7 kcal/mol. At such a low energy,
both considered collisions were nonreactive.

As can be seen in Fig. 3, fidelity due to SOCs decays
significantly in both cases. Relatively fast decay of fidelity in
the case of electronically excited initial state signifies impor-
tance of SOCs on the collision dynamics. In the case of the
ground state collision, fidelity decays more slowly and SOCs
may probably be neglected in less accurate simulations. Nev-
ertheless, the decay is sufficient to justify inclusion of SOCs
in accurate quantitative simulations. On the other hand, the
decay of fidelity due to NACs is similar for both states. For
the ground-state dynamics, NACs are comparable in impor-
tance to SOCs, whereas for the excited state dynamics, SOCs
are clearly much more important.

IV. CONCLUSIONS

We have demonstrated that the fidelity criterion may de-
tect disturbances of the quantum dynamics due to SOCs,
which may not be found if cruder criteria, such as the ex-
tent of the population transfer between PESs, are used. This
observation is in accordance with our previous findings on the
nondiabaticity and nonadiabaticity of quantum dynamics.18, 20

It should be noted that fidelity is a nonspecific criterion and
more specific measures may be constructed when needed in
order to attribute the effect of couplings to either the elec-
tronic or nuclear dynamics. This can be done, for example,
by combination of the fidelity criterion and surface popu-
lation criterion. However, the separation of the nuclear and
electronic effects is not always possible. Fidelity is a rigor-
ous single measure that can take into account both effects
simultaneously.

We found that the MSDR approximation of quantum fi-
delity remains accurate when the perturbation is caused by
SOCs. Based on our previous experience, the MSDR may
fail, especially in cases where the underlying mixed quantum-
classical dynamics does not approximate the quantum dynam-
ics reasonably well. This can happen, e.g., when tunneling
is important in the dynamics of the unperturbed Hamiltonian
Ĥ0. In that case, any implementation of the MSDR, which
is based on the mixed quantum-classical dynamics, may not
work. Other failures are specific to current implementations
of MSDR, where both the LMFD and FSSH dynamics may
be inaccurate due to the fact that all matrix elements of the
density matrix are attached to the same trajectory and evolve
on the same PES. A typical situation where approximations of
this kind fail occurs when regions of strong coupling are en-
countered repeatedly and dynamics on PESs between these
encounters differ substantially. Surprisingly, in many cases
the MSDR stays accurate despite the failure of the underlying
dynamics. This is due to the cancellation of errors between the
dynamics of Ĥ0 and the (not explicitly performed) dynamics
of Ĥε .

Applications of the MSDR to the photoisomerization dy-
namics of CH2NH2

+ and to the collision of F + H2 demon-
strated that our method may be used as a tool to decide which

PESs and couplings are important in the quantum dynamics,
without the need to run quantum dynamics itself. In contrast
to the quantum dynamics, the MSDR does not scale exponen-
tially with the number of degrees of freedom, it may be used
on the fly and it does not require costly scans of PESs or any
other substantial prior knowledge of a system. (Note that there
exist several methods of quantum dynamics which may also
be used on the fly.82–84 Nevertheless, they are not currently
widely used.) Finally, the MSDR is simple and its current for-
mulations may be very easily implemented into any code for
FSSH or Ehrenfest dynamics.
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