75 research outputs found
One-Counter Stochastic Games
We study the computational complexity of basic decision problems for
one-counter simple stochastic games (OC-SSGs), under various objectives.
OC-SSGs are 2-player turn-based stochastic games played on the transition graph
of classic one-counter automata. We study primarily the termination objective,
where the goal of one player is to maximize the probability of reaching counter
value 0, while the other player wishes to avoid this. Partly motivated by the
goal of understanding termination objectives, we also study certain "limit" and
"long run average" reward objectives that are closely related to some
well-studied objectives for stochastic games with rewards. Examples of problems
we address include: does player 1 have a strategy to ensure that the counter
eventually hits 0, i.e., terminates, almost surely, regardless of what player 2
does? Or that the liminf (or limsup) counter value equals infinity with a
desired probability? Or that the long run average reward is >0 with desired
probability? We show that the qualitative termination problem for OC-SSGs is in
NP intersection coNP, and is in P-time for 1-player OC-SSGs, or equivalently
for one-counter Markov Decision Processes (OC-MDPs). Moreover, we show that
quantitative limit problems for OC-SSGs are in NP intersection coNP, and are in
P-time for 1-player OC-MDPs. Both qualitative limit problems and qualitative
termination problems for OC-SSGs are already at least as hard as Condon's
quantitative decision problem for finite-state SSGs.Comment: 20 pages, 1 figure. This is a full version of a paper accepted for
publication in proceedings of FSTTCS 201
Trading Performance for Stability in Markov Decision Processes
We study the complexity of central controller synthesis problems for
finite-state Markov decision processes, where the objective is to optimize both
the expected mean-payoff performance of the system and its stability.
We argue that the basic theoretical notion of expressing the stability in
terms of the variance of the mean-payoff (called global variance in our paper)
is not always sufficient, since it ignores possible instabilities on respective
runs. For this reason we propose alernative definitions of stability, which we
call local and hybrid variance, and which express how rewards on each run
deviate from the run's own mean-payoff and from the expected mean-payoff,
respectively.
We show that a strategy ensuring both the expected mean-payoff and the
variance below given bounds requires randomization and memory, under all the
above semantics of variance. We then look at the problem of determining whether
there is a such a strategy. For the global variance, we show that the problem
is in PSPACE, and that the answer can be approximated in pseudo-polynomial
time. For the hybrid variance, the analogous decision problem is in NP, and a
polynomial-time approximating algorithm also exists. For local variance, we
show that the decision problem is in NP. Since the overall performance can be
traded for stability (and vice versa), we also present algorithms for
approximating the associated Pareto curve in all the three cases.
Finally, we study a special case of the decision problems, where we require a
given expected mean-payoff together with zero variance. Here we show that the
problems can be all solved in polynomial time.Comment: Extended version of a paper presented at LICS 201
Local Distributed Model Checking of Reg CTL
AbstractThe paper is devoted to the problem of extending the temporal logic CTL so that it is more expressive and complicated properties can be expressed more succinctly. The specification language Reg CTL, an extension of CTL, is proposed. In Reg CTL every CTL temporal operator is augmented with a regular expression restricting thus moments when the validity is required. The resulting logic is more expressive than previous extensions of CTL with regular expressions. Reg CTL can be model-checked on-the-fly and the model checking algorithm is well distributable
Model Checking of RegCTL
The paper is devoted to the problem of extending the temporal logic CTL so that it is more expressive and complicated properties can be expressed in a more readable form. The specification language RegCTL, an extension of CTL, is proposed. In RegCTL every CTL temporal operator is augmented with a regular expression, thus restricting moments when the validity is required. We propose a local distributed model checking algorithm for RegCTL
Stochastic Shortest Path with Energy Constraints in POMDPs
We consider partially observable Markov decision processes (POMDPs) with a
set of target states and positive integer costs associated with every
transition. The traditional optimization objective (stochastic shortest path)
asks to minimize the expected total cost until the target set is reached. We
extend the traditional framework of POMDPs to model energy consumption, which
represents a hard constraint. The energy levels may increase and decrease with
transitions, and the hard constraint requires that the energy level must remain
positive in all steps till the target is reached. First, we present a novel
algorithm for solving POMDPs with energy levels, developing on existing POMDP
solvers and using RTDP as its main method. Our second contribution is related
to policy representation. For larger POMDP instances the policies computed by
existing solvers are too large to be understandable. We present an automated
procedure based on machine learning techniques that automatically extracts
important decisions of the policy allowing us to compute succinct human
readable policies. Finally, we show experimentally that our algorithm performs
well and computes succinct policies on a number of POMDP instances from the
literature that were naturally enhanced with energy levels.Comment: Technical report accompanying a paper published in proceedings of
AAMAS 201
- …