
Electronic Notes in Theoretical Computer Science 68 No. 4 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume68.html 14 pages

Local Distributed Model Checking of RegCTL

Tomáš Brázdil 2

Department of Computer Science
Faculty of Informatics, Masaryk University Brno

Brno, Czech Republic

Ivana Černá 1,3

Department of Computer Science
Faculty of Informatics, Masaryk University Brno

Brno, Czech Republic

Abstract

The paper is devoted to the problem of extending the temporal logic CTL so that
it is more expressive and complicated properties can be expressed more succinctly.
The specification language RegCTL, an extension of CTL, is proposed. In RegCTL
every CTL temporal operator is augmented with a regular expression restricting
thus moments when the validity is required. The resulting logic is more expressive
than previous extensions of CTL with regular expressions. RegCTL can be model-
checked on-the-fly and the model checking algorithm is well distributable.

1 Introduction

Model checking is a very successful method for verification of complex reactive
systems. A desired behavioural property of a reactive system is specified as
a formula of temporal logic, while a formal description of a system is usually
transformed into a transition system (Kripke structure). Model checking al-
gorithms verify that the system under study satisfies its expected behavioural
specifications.

A key issue in developing model checking algorithms is the choice of a speci-
fication language in which a desired behaviour is described. The most common
specification languages are temporal logics. Linear temporal logic formulas are

1 This work has been partially supported by GACR grant No. 201/00/1023
2 Email: xbrazdil@fi.muni.cz
3 Email: cerna@fi.muni.cz

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82751404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Brázdil, Černá

interpreted over linear sequences, while in branching temporal logics each mo-
ment in time may split into various possible futures. Among the linear time
logics the logic LTL can express precisely the star-free ω-regular behaviours.
Nevertheless there are natural linear “regular” behaviours which cannot be
expressed in this logic, as e.g. the behaviour stating that an atomic proposi-
tion p is true in all even moments of time. Besides this, the specification of
many useful properties is cumbersome for users. To widen its expressibility
several extensions were proposed. [11] suggested to use ω-automata as tem-
poral connectives and [6] strengthens the until operator of LTL by indexing it
with regular programs of propositional dynamic logic.

In the branching time framework a similar approach has been advocated in
[5] using deterministic ω-automata connectives, in [2], [1] proposing the RCTL
logic and in [9] for alternation free µ-calculus. We generalise the RCTL logic
adopting the approach from [6] and augment the until operator with a regular
expression. The resulting logic RegCTL is more expressive than RCTL logic.

RegCTL is in fact a natural extension of CTL. Intuitively, if the system is
defined over a set AP of atomic propositions, then an infinite behaviour of the
system can be viewed as a word over the alphabet 2AP , and a set of allowed
behaviours can be described by a regular expression whose alphabet consists
of Boolean formulas over AP . In RegCTL , every CTL temporal operator is
augmented with a regular expression restricting moments when the validity is
required. Both CTL and RCTL temporal operators can be directly formulated
in RegCTL .

For model checking RegCTL logic we use an automata theoretic approach
presented in [8]. It is based on a translation of RegCTL formula into hesi-
tant/weak symmetric alternating tree automaton. The model checking prob-
lem can be then reduced to checking nonemptiness of 1-letter simple weak
alternating word automaton. Employing methods from [4] we attain a dis-
tributed local model checking algorithm (i.e, it computes the necessary part
of a transition system on-the-fly).

On the contrary to CTL, the size of the automaton corresponding to the
formula can be exponential and therefore the model checking of RegCTL is
in PSPACE. Nevertheless, we identify a large subset of RegCTL formulas
(subsuming e.g. whole RCTL) for which the model checking problem is in P
(in fact it is quadratic with respect to the formula size and linear with respect
to the size of Kripke structure).

The model checking algorithm for RCTL from [2] is based on translating
RCTL formulas into CTL formulas and appropriate finite automata, and using
CTL model checking algorithms. For a subclass of RCTL (allowing to express
reachability properties) we present an on-the-fly algorithm. Thus our approach
not only increases the expressibility of RCTL but also allows us to use an on-
the-fly algorithm for whole RCTL.

The paper is organised as follows. We introduce the syntax and semantics
of the RegCTL temporal logic in Section 2, and come up with an alternating

2

Brázdil, Černá

automaton accepting models of a RegCTL formula in Section 3. Sequential
model checking algorithm for this logic is proposed in Section 4. The corre-
sponding distributed model checking procedure is presented in Section 5. We
give our conclusions in Section 6.

2 The RegCTL logic

In this section we define the syntax and semantics of Regular CTL (RegCTL)
logic, which extends the CTL logic [3] with regular expressions.

Given a finite set X, let B(X) be the set of all Boolean formulas over X
(i.e., boolean formulas built from elements in X using ∧, ∨ and ¬), where
we also allow the formulas true and false. If only connectives ∧ and ∨ are
allowed, we talk about the set of positive Boolean formulas over X, B+(X).
For a set S ⊆ X and a formula φ ∈ B(X), we say that S satisfies φ, S |= φ,
if assigning true to elements of S and assigning false to elements in X \ S
makes φ true. The length ‖f‖ of formula f ∈ B(X) is defined inductively:
‖true‖ = ‖false‖ = ‖p‖ = 1 for p ∈ X; ‖g ∨ h‖ = ‖g ∧ h‖ = ‖g‖+ ‖h‖ + 1;
‖¬g‖ = ‖g‖+ 1.
For a given set B(X) of boolean formulas, the set R of regular expressions

over B(X) is the least set containing B(X) and such that if P,Q ∈ R then
also P + Q, PQ, P ∗ ∈ R. Let us denote the language defined by a regular
expression R over B(X) as L(R) (the alphabet of L(R) is an appropriate subset
of B(X)). The length ‖R‖ of regular expression R is defined inductively: if
R = f for some f ∈ B(X), then ‖R‖ = ‖f‖; otherwise ‖P + Q‖ = ‖PQ‖ =
‖P‖+ ‖Q‖+ 1; ‖P ∗‖ = ‖P‖+ 1.

2.1 Syntax of RegCTL

Let AP be a set of atomic propositions. An RegCTL state formula is either:

• true, false, p, ¬p for all p ∈ AP ,

• φ ∨ ψ or φ ∧ ψ, where φ and ψ are RegCTL state formulas,

• Aφ or Eφ, where φ is a RegCTL path formula.

An RegCTL path formula is:

• φURψ or φŨRψ, where φ and ψ are RegCTL state formulas and R is a
regular expression over B(AP) such that ε
∈ L(R).

The closure cl(τ) of a RegCTL formula τ is the set of all RegCTL state
subformulas including τ but excluding true and false. Moreover, we define
the multiset reg occ(τ) representing all occurences of regular expressions in
formula τ . The length ‖τ‖ of a RegCTL formula τ is defined as |cl(τ)| +
ΣR∈reg occ(τ)‖R‖.

3

Brázdil, Černá

2.2 Semantics of RegCTL

The semantics of RegCTL is defined with respect to computation trees. A tree
is a set T ⊆ N

∗ such that if x.c ∈ T where x ∈ N
∗ and c ∈ N, then also x ∈ T ,

and for all 0 ≤ c′ < c, x.c′ ∈ T . The elements of T are called nodes, and the
empty word ε is the root of T . For every x ∈ T , the nodes x.c, where c ∈ N

are the successors of x. The number of successors of x is called degree of x
and is denoted by d(x). The node with no successors is called leaf . A path π
in a tree T is a minimal set π ⊆ T containing some node as its root and such
that for every x ∈ π, either x is a leaf or there exists a unique c ∈ N such that
x.c ∈ π. A tree containing a unique path starting in ε is called an (in)finite
word. Given an alphabet Σ, a Σ-labeled tree is a pair T = 〈T, L〉 where T is
a tree and L : T −→ Σ maps each node of T to a letter in Σ. A computation
tree is a Σ-labeled tree T , where Σ = 2AP .

The notation T , x |= φ indicates that a RegCTL state formula φ holds at
the node x of the computation tree T . Similarly, T , π |= ψ indicates that a
RegCTL path formula ψ holds along the path π. When T is clear from the
context, we write x |= φ and π |= ψ. Also, T |= φ if and only if T , ε |= φ.
For a finite sequence of nodes x0, x1, . . . , xn and a regular expression R over
B(AP) we write x0x1 . . . xn ∈ L(R) iff there exists a word f0f1 . . . fn ∈ L(R)
such that L(xi) |= fi for all 0 ≤ i ≤ n.

The relation |= is inductively defined as follows:
• x |= true and x
|= false
• x |= p for p ∈ AP iff p ∈ L(x)

• x |= ¬p for p ∈ AP iff p
∈ L(x)

• x |= φ ∨ ψ iff x |= φ or x |= ψ

• x |= φ ∧ ψ iff x |= φ and x |= ψ

• x |= Aψ iff for every path π = π0π1 · · · , such that π0 = x, we have π |= ψ

• x |= Eψ iff there exists a path π = π0π1 · · · , such that π0 = x and π |= ψ

• π |= φURψ iff there exists i ≥ 0 and π0π1 · · ·πi ∈ L(R) such that πj |= φ
for all 0 ≤ j < i and πi |= ψ

• π |= φŨRψ iff for all i ≥ 0 such that π0π1 · · ·πi ∈ L(R) and the following
property holds: if πi
|= ψ, then there exists 0 ≤ j < i such that πj |= φ.

Usual temporal operators can be expressed as follows: next operatorXφ as
trueU true·trueφ, until operator φUψ as φU true·true∗ψ, and release operator
φŨψ as φŨ true·true∗ψ.

Let us consider the RegCTL formula E(qŨ true·(true·true)∗p) which expresses
the fact that there exists a path where p holds at every even position and this
property can be released by q. This property can be expressed neither in CTL
nor in RCTL.

The RegCTL formula A(falseŨw·b∗·a·(v∗·r+v∗·w·b∗·r)d) (see [2]) illustrates the
way how regular expressions can make the formulation of a property easier.

4

Brázdil, Černá

The CTL formula expressing the same property is:

AG(¬(w ∧ (EX(E[bU(a ∧ (EX(((E[vU(r ∧ ¬d])∧

(E[vU(w ∧ (EX(E[bU(r ∧ ¬d])))])))))]))))

3 Alternating tree automaton for RegCTL formula

The model checking algorithm for RegCTL we are going to present is based on
a translation of a RegCTL state formula to an automaton over infinite trees
which accepts models of the formula (in a similar way as for CTL [8]).

A symmetric finite alternating automaton over infinite trees is a tuple
A = 〈Σ, Q, δ, q0, F 〉, where Σ is an input alphabet, Q is a finite set of states, δ :
Q×Σ −→ B+({✸,✷}×Q) is a transition function, q0 is an initial state. The set
F specifies an acceptance condition. We define the size ‖A‖ of an automaton
A as |Q|+ |F |+ ‖δ‖ where ‖δ‖ is the sum of the lengths of the nonidentically
false formulas that appear as δ(q, σ) for some q ∈ Q and σ ∈ Σ.
A run 〈Tr, r〉 of an alternating automaton A over a Σ-labelled tree 〈T, L〉

is a Σr-labelled tree where Σr = N
∗ ×Q and 〈Tr, r〉 satisfies:

• r(ε) = (ε, q0),

• Let y ∈ Tr with r(y) = (x, q) and δ(q, L(x)) = Θ. Then there is a (possibly
empty) set S = {(c0, q0), (c1, q1), . . . , (cn, qn)} ⊆ {0, . . . , d(x)− 1} ×Q such
that the following holds:

(i) S satisfies Θ, where (✸, p) ⇔ (0, p) ∨ . . . ∨ (d(x) − 1, p) and (✷, p) ⇔
(0, p) ∧ . . . ∧ (d(x)− 1, p) for p ∈ Q,

(ii) for all 0 ≤ i ≤ n, we have y.i ∈ Tr and r(y.i) = (x.ci, qi).

We consider an alternating word automata to be a special case of tree au-
tomata with transition function δ : Q× Σ −→ B+(Q).

Given a run 〈Tr, r〉 and an infinite path π in Tr, let inf(π) ⊆ Q be such that
q ∈ inf(π) iff there are infinitely many y ∈ π for which r(y) ∈ N

∗ × {q} (i.e.,
inf(π) is the set of states which appear infinitely often in π). A run 〈Tr, r〉
is accepting iff all of its infinite paths satisfy the acceptance condition. We
denote L(A) the set of all computation trees for which there is an accepting
run of A.
Here we consider two special types of alternating tree automata, so called

hesitant automata (HAA) and weak automata (WAA), with special restric-
tions on the transition function and specific acceptance conditions.

In a hesitant automaton there exists a partition of Q into disjoint sets
Q1, . . . , Qm and a partial order ≤ on the collection of Qi’s such that for every
q ∈ Qi and q

′ ∈ Qj for which q
′ occurs in δ(q, σ) we have Qj ≤ Qi. In addition,

each set Qi is classified as either transient, existential or universal. The type
of Qi is determined by rules:

5

Brázdil, Černá

• Qi is a transient set iff for all q ∈ Qi and σ ∈ Σ, δ(q, σ) contains no element
with a state from Qi.

• Qi is an existential set iff for all q ∈ Qi and σ ∈ Σ, δ(q, σ) contains only
disjunctively related elements of the form (✸, p) where p ∈ Qi.

• If Qi is an universal set for all q ∈ Qi and σ ∈ Σ, δ(q, σ) contains only
conjunctively related elements of the form (✷, p) where p ∈ Qi.

The acceptance condition is a tuple 〈G,B〉, where G,B ⊆ Q. Every infinite
path π in Tr gets trapped within some existential or universal set Qi. The
path then satisfies an acceptance condition 〈G,B〉 iff
• either Qi is an existential set and inf(π) ∩G
= ∅
• or Qi is an universal set and inf(π) ∩ B = ∅
The depth of HAA is defined as a maximal length of a chain in the partial
order ≤ on the collection of Qi’s.

In a weak automaton there exists a partition of Q into Q1, . . . , Qm with
the same partial order as in HAA. The acceptance condition F is a subset of
Q such that for every Qi, 1 ≤ i ≤ m, either Qi ⊆ F (Qi is an accepting set)
or Qi ∩ F = ∅ (Qi is a rejecting set).

Construction of the automaton

Let us first fix some notation. For each RegCTL formula τ the multiset
reg occ(τ) = {R1, . . . , Rn} represents all occurences of regular expressions in
the formula. For every regular expression Ri we have a finite state automaton
Ai = (Qi,Σi, δi, q

0
i , Fi), Σi ⊆ B(AP), which accepts exactly L(Ri). We sup-

pose all Qi’s to be pairwise disjunctive. For states of these automata we use
symbols r, q (with indices, if necessary). Moreover, let for r ∈ Qi and σ ∈ 2AP

symbol succ(r, σ) denote the set of states
⋃

σ|=f δi(r, f).

Given a RegCTL formula τ we construct the weak symmetric alternating
automaton Aτ = (2AP , Q, δ, τ, F). The set of states of the automaton Aτ is
Q = (

⋃
i=1,...n Qi) ∪ cl(τ). Its transition function δ is for all σ ∈ 2AP defined

inductively as follows:

(i) δ(p, σ) = true if p ∈ σ and δ(p, σ) = false if p
∈ σ.

(ii) δ(¬p, σ) = true if p
∈ σ and δ(¬p, σ) = false if p ∈ σ.

(iii) δ(φ ∨ ψ, σ) = δ(φ, σ) ∨ δ(ψ, σ).

(iv) δ(φ ∧ ψ, σ) = δ(φ, σ) ∧ δ(ψ, σ).

(v) δ(E(φURiψ), σ) = δ(q0
i , σ) and for r ∈ Qi

• δ(r, σ) =
∨

q∈succ(r,σ)(✸, q) ∧ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅
• δ(r, σ) = (

∨
q∈succ(r,σ)(✸, q) ∧ δ(φ, σ)) ∨ δ(ψ, σ) otherwise

(vi) δ(A(φŨRiψ), σ) = δ(q0
i , σ) and for r ∈ Qi

• δ(r, σ) =
∧

q∈succ(r,σ)(✷, q) ∨ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅
• δ(r, σ) = (

∧
q∈succ(r,σ)(✷, q) ∨ δ(φ, σ)) ∧ δ(ψ, σ) otherwise

6

Brázdil, Černá

// ?>=<89:;q0 a
//

a

((?>=<89:;/.-,()*+q1

b

mm ?>=<89:;/.-,()*+q2

c
mm

Fig. 1. Finite state automaton A for the regular expression R; edges are labelled
with atomic propositions (i.e. formulas over AP); q1 and q2 are accepting, q0 is
initial

{b} // {b} // . . .

{a, g} // {b, c, g}
33hhhhhhhh

++VVVVVVVV

{c} // {c} // . . .

Fig. 2. Computation tree; nodes are labelled with atomic propositions true in them.

(vii) δ(E(φŨRiψ), σ) = δ(q0
i , σ) and for r ∈ Qi

• δ(r, σ) =
∧

q∈succ(r,σ)(✸, q) ∨ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅
• δ(r, σ) = (

∧
q∈succ(r,σ)(✸, q) ∨ δ(φ, σ)) ∧ δ(ψ, σ) otherwise

(viii) δ(A(φURiψ), σ, k) = δ(q0
i , σ) and for r ∈ Qi

• δ(r, σ) =
∨

q∈succ(r,σ)(✷, q) ∧ δ(φ, σ) if succ(r, σ) ∩ Fi = ∅
• δ(r, σ) = (

∨
q∈succ(r,σ)(✷, q) ∧ δ(φ, σ)) ∨ δ(ψ, σ) otherwise

Remark 3.1 We define an empty disjunction to be false and empty conjunc-
tion to be true.

The automaton Aτ is weak. The acceptance condition is F =
⋃
Qi for

all Qi’s such that the regular expression Ri occurs in a subformula of the
form E(φŨRiψ) or A(φŨRiψ). The weakness partition over the set of states
is formed by singletons {ψ}, ψ ∈ cl(τ), and by all sets Qi, 1 ≤ i ≤ n.

The correctness of the given construction is guaranteed only for cases where
for every regular expression Ri which occurs in a subformula of the form
E(φŨRiψ) or A(φURiψ) the corresponding finite automaton Ai is determin-
istic. Here deterministic automaton is an automaton such that for every its
state r ∈ Qi and σ ∈ 2AP the cardinality of the set succ(r, σ) is at most one
(in the succeeding text we always use this notion of determinism). To explain
problems caused by nondeterministic automata let us consider the formula
τ ≡ E(falseŨRg), with R specified on Fig.1, and the computation tree from
Fig.2.

The automaton Aτ in state E(falseŨRg) (≡ q0) reading {a, g} proceeds
conjunctively to states q1 and q2 and to the node labelled {b, c, g}. Being in
state q1 and reading {b, c, g}, Aτ remains in q1 and disjunctively proceeds to
the node labelled {c}. Being in state q2 and reading {b, c, g}, Aτ remains in q2

and disjunctively proceeds to the node labelled {b}. Both paths are finite and
accepting and thus Aτ accepts, but τ is not true in the node labelled {a, g}.

Remark 3.2 On the assumption of the determinism of relevant finite au-

7

Brázdil, Černá

tomata, the automaton Aτ is also hesitant. The hesitant partition is the same
as the weakness partition. The set Qi is existential iff the regular expression
Ri occurs in an subformula of the form E(φURiψ) or E(φŨRiψ). The set Qi

is universal iff the regular expression Ri occurs in an subformula of the form
A(φURiψ) or A(φŨRiψ). Other sets are transient. The acceptance condition
for automaton Aτ is F = 〈G,B〉 where
• G =

⋃
Qi for all Qi such that the regular expression Ri occurs in an sub-

formula of the form E(φŨRiψ) and

• B =
⋃
Qi for all Qi such that the regular expression Ri occurs in an sub-

formula of the form A(φURiψ).

In what follows we suppose that finite automata for regular expressions Ri

which occurs in subformulas of the form E(φŨRiψ) or A(φURiψ) are deter-
ministic.

Theorem 3.3 Let T = 〈T, L〉 be a computation tree. Then the automaton
Aτ accepts T if and only if T |= τ .

Proof. We first prove that Aτ is complete. That is, given a computation tree
T , a formula ϕ ∈ cl(τ) and a node x for which T , x |= ϕ, then Aτ accepts the
subtree of the computation tree T with root x starting in the state ϕ. Thus
in particular, if T |= τ then Aτ accepts T .
To this end we use the following notation. For finite automaton Ai, its

states r, q and a node x ∈ T we use q ∈ δi(r, x) as an abbreviation for q ∈
δi(r, f) where f ∈ B(AP) and L(x) |= f . A computation of Ai over x0 · · ·xn

is a sequence of states q0, . . . , qn such that q0 is an initial state and qj+1 ∈
δi(qj , xj) for 0 ≤ j < n. If moreover the condition δi(qn, xn) ∩ Fi
= ∅ is true,
then the computation is accepting.

Let 〈Tr, r〉 be a run of alternating automaton Aτ over a computation tree
T = 〈T, L〉. We describe a path in the run Tr as a sequence of its labels (i.e.,
a sequence of tuples (x, q) where x ∈ T and q ∈ Q). Let (x0, q0) · · · be a finite
or infinite path in Tr. We say that its prefix pr is maximal in Q′ iff either
pr = (x0, q0) · · · (xn, qn), q0, . . . , qn ∈ Q′ and q
∈ Q′ for every successor (q, x)
of (qn, xn) in Tr, or pr = (x0, q0) · · · is infinite and qj ∈ Q′ for 0 ≤ j. The
projection of a path π = (x0, q0) · · · is proj(π) = x0 · · · .
We prove the completeness by induction on the structure of ϕ. Cases

ϕ = p, ϕ = ¬p, ϕ = φ ∨ ψ, ϕ = φ ∧ ψ are simple.

• x0 |= E(φURiψ)
There is a path x0 · · ·xn in T such that x0 · · ·xn ∈ L(Ri), xj |= φ for
0 ≤ j < n and xn |= ψ. Let q0, . . . , qn be an accepting computation of Ai

over x0 · · ·xn.
Aτ disjunctively chooses states qj and input nodes xj . In every node

xj automaton Aτ conjunctively proceeds as if it is in state φ. Because
δi(qn, xn) ∩ Fi
= ∅, Aτ in state qn proceeds as if it is in state ψ.

8

Brázdil, Černá

• x0 |= A(φŨRiψ).
Let x0 · · · be a path in T . For every prefix x0 · · ·xn of x0 · · · holds: if
x0 · · ·xn ∈ L(Ri) then either xn |= ψ or there exists 0 ≤ k < n such that
xk |= φ.
Aτ reading node xj being in state q ∈ Qi proceeds as follows: If xj |=

φ then it proceeds as if it is in state φ. If δi(q, xj) = ∅ then Aτ does
not continue along this path. Otherwise it proceeds conjunctively to all
states from δi(q, xj) and to all successors of xj in T . If δi(q, xj) ∩ Fi
= ∅
then x0 · · ·xj is in L(Ri) and xk
|= φ for 0 ≤ k < j, thus the automaton
conjunctively proceeds as if it is in state ψ. If φ does not hold along some
path, then the path is accepting due to the acceptance condition.

• x0 |= E(φŨRiψ)
There is a path x0 · · · in T such that for every its prefix x0 · · ·xn holds: if
x0 · · ·xn ∈ L(Ri) then either xn |= ψ or there exists 0 ≤ k < n such that
xk |= φ.
Aτ reading node xj and being in state q proceeds as follows: if xj |= φ then

it proceeds as if it is in state φ. If δi(q, xj) = ∅ then Aτ does not continue
along this path. Otherwise it proceeds to xj+1 and to single successor state
of q according to δi. If δi(q, xj) ∩ Fi
= ∅ then x0 · · ·xj ∈ L(Ri) and xk
|= φ
for 0 ≤ k < j and xj |= ψ, thus the automaton conjunctively proceeds as if
it is in state ψ. If φ does not hold along x0 · · · , then the path is accepting
due to the acceptance condition.

• x0 |= A(φURiψ)
Let x0 · · · be a path in T . There exists 0 ≤ n such that x0 · · ·xn ∈ L(Ri),
xn |= ψ and xj |= φ for 0 ≤ j < n.
Aτ along the path x0 · · · follows the deterministic accepting computation

of Ai over x0 · · ·xn and simultaneously proceeds as if it is in state φ. Then
Aτ in some state q reading xn proceeds as if it is in state ψ.

We now prove that Aτ is sound. That is, given an accepting run 〈Tr, r〉 of
Aτ over a computation tree T = 〈T, L〉, we prove that for every y ∈ Tr such
that r(y) = (x, ϕ), ϕ ∈ cl(τ), we have T , x |= ϕ. Thus in particular T , ε |= τ .
The proof proceeds by induction on the structure of ϕ. Cases ϕ = p, ϕ = ¬p,
ϕ = φ∨ψ, ϕ = φ∧ψ are simple. In the next construction we make use of the
fact that in Aτ we have several names for one state.

• r(y) = (x0, E(φU
Riψ))

Let pr be a prefix maximal inQi of a path in Tr starting with (x0, E(φU
Riψ)).

Due to the acceptance conditions the prefix pr = (x0, E(φU
Riψ)) · · · (xn, qn)

is finite. Then Aτ in state qn reading xn must proceed as if it is in state ψ
assuring xn |= ψ and x0 · · ·xn ∈ L(Ri). Moreover, along this prefix it must
conjunctively proceed as if it is in state φ assuring xj |= φ for 0 ≤ j < n.

• r(y) = (x0, A(φŨ
Riψ))

Aτ reads every path in T following all possible computations of Ai over
particular paths. Let us fix an arbitrary path x0 · · · in T and its arbitrary

9

Brázdil, Černá

prefix x0 · · ·xn ∈ L(Ri).
Let Pr be the set of all prefixes pr maximal in Qi of all paths in Tr

starting with (x0, A(φŨ
Riψ)) and such that proj(pr) is a prefix of x0 · · · .

Case 1 : There is a prefix pr ∈ Pr, pr = (x0, A(φŨ
Riψ)) · · · (xn, qn) · · · such

that δi(qn, xn) ∩ Fi
= ∅ (the length of pr can be greater than n). Then Aτ

being in state qn reading xn has to proceed as if it is in state ψ, assuring
thus xn |= ψ.
Case 2 : There is no such prefix. Let us consider an accepting computation
of Ai over x0 · · ·xn. Then there must be 0 ≤ k < n such that the automaton
Aτ in state qk reading xk proceeds as if it is in state φ, assuring thus xk |= φ.
The arguments hold true for any path x0 · · · in T and its prefix x0 · · ·xn ∈

L(Ri) and therefore x0 |= A(φŨRiψ).

• r(y) = (x0, E(φŨ
Riψ))

Aτ disjunctively chooses a path in T following states of the only possible
computation of Ai. Let pr be a prefix maximal in Qi of a path in Tr starting
with (x0, E(φŨ

Riψ)).
Case 1 : If pr is infinite (it is possible due to acceptance condition) then
thank to the definition of δ and determinism of Ai whenever a prefix of
proj(pr) is in L(Ri) then Aτ proceeds as if it is in state ψ.
Case 2 : Otherwise pr = (x0, E(φŨ

Riψ)) · · · (xn, qn). If δi(qn, xn) = ∅, then
no word with the prefix x0 · · ·xn is in L(Ri). If δi(qn, xn)
= ∅, then Aτ

proceeds in state qn reading xn as if it is in state φ, assuring thus xn |= φ.
Note that whenever is a prefix of x0 · · ·xn in L(Ri) then Aτ proceeds as if
it is in state ψ (similar arguments as in Case 1).

• r(y) = (x0, A(φU
Riψ))

Aτ reads every path in T following the only possible computation of Ai.
Let us fix an arbitrary path x0 · · · in T .
Let pr = (x0, A(φU

Riψ)) · · · (xn, qn) be the prefix maximal in Qi of the
path in Tr starting with (x0, A(φU

Riψ)) and such that proj(pr) is a prefix
of x0 · · · . The prefix pr is finite due to the acceptance condition. Therefore
Aτ in state qn reading xn must proceed as if it is in state ψ assuring xn |= ψ
and x0 · · ·xn ∈ L(Ri). Moreover, along this prefix it must conjunctively
proceed as if it is in state φ, assuring thus xj |= φ for 0 ≤ j < n.

✷

4 Sequential RegCTL Model Checking

At first we define the Kripke structure as a tuple K = 〈AP,W,E,w0, L〉
where AP is a set of atomic propositions as defined above, W is a set of
states, E ⊆ W ×W is a transition relation that must be total (i.e., for every
w ∈ W there exists w′ ∈ W such that 〈w,w′〉 ∈ E), w0 is an initial state, and
L : W → 2AP maps each state to the set of atomic propositions true in that
state.

10

Brázdil, Černá

We define the size ‖K‖ of K as |W | + |E|. Every Kripke structure K =
〈AP,W,E,w0, L〉 can be viewed as a 2AP -labelled computation tree TK =
〈TK , LK〉 obtained by unwinding K.

The model checking problem is for given temporal logic formula τ and
Kripke structure K to decide whether TK |= τ . The model checking algorithm
for a given RegCTL state formula τ and a Kripke structure K proceeds as
follows:

(i) Construct the alternating automaton Aτ as defined above,

(ii) Construct the product automaton AK,τ = K × Aτ whose language is
nonempty iff TK |= τ ,

(iii) Check nonemptiness of the product automaton AK,τ .

The product automaton AK,τ is exactly defined as follows: Let Aτ =
〈2AP , Qτ , δτ , q0, Fτ 〉 and K = 〈AP,W,E,w0, L〉. The product of Aτ and K
is a 1-letter alternating word automaton AK,τ = 〈{a},W × Qτ , δ, 〈w0, q0〉, F 〉
where δ and F are defined as follows:

• Let q ∈ Qτ , w ∈ W , succ(w) = 〈w0, . . . , wd(w)−1〉 and δτ (q, L(w)) = Θ.
Then δ(〈w, q〉, a) = Θ′, where Θ′ is obtained from Θ by replacing each (✸, p)
by 〈w0, p〉 ∨ . . . ∨ 〈wd(w)−1, p〉 and each (✷, p) by 〈w0, p〉 ∧ . . . ∧ 〈wd(w)−1, p〉.

• The acceptance condition F respects the acceptance condition Fτ of Aτ . If
Aτ is weak then F = W × Fτ . If Aτ is hesitant and Fτ = 〈G,B〉 then
F = 〈W ×G,W ×B〉.

The product automaton is hesitant (weak) if Aτ is hesitant (weak).

Theorem 4.1 [8] AK,τ accepts a
ω iff TK |= τ .

Complexity

The complexity of the model checking algorithm depends on the type of
the formula. As we have shown in the previous section, the necessary condi-
tion for Aτ to be correct is the determinism of finite automaton for the regular
expression occuring in a subformula of the form E(φŨRψ) or A(φURψ). For
this reason we define a deterministic fragment of RegCTL , det-RegCTL . In
this fragment R occuring in A(φURψ) or E(φŨRψ) are restricted to regu-
lar expressions which have deterministic finite automata with the number of
states linear with respect to the size of R. For a det-RegCTL formula τ it
is guaranteed that the number of states of Aτ is linear in ‖τ‖. For a general
RegCTL formula the number of states can be 2O(‖τ‖) due to the necessary
determinization. In both cases the length of δτ (q, σ) is linear in ‖τ‖.
The complexity of the model checking algorithm problem is measured with

respect to the size of K and τ . The key point is the size of the product
automaton.

The number of states of AK,τ is |W | · |Qτ | and the size of F is O(|W | · |Qτ |).
The length of δ((w, p), a) is equal to the length of δτ (p, L(w)) times the degree

11

Brázdil, Černá

of w. Summing up lengths of δ((w, p), a) for fixed p and all states w ∈ W gives
us O(|E| · ‖τ‖). The total size of the transition function is O(|E| · ‖τ‖ · |Qτ |).
Thus the total size of the product automaton AK,τ is O(‖K‖ · ‖τ‖2) for a
det-RegCTL formula τ and O(‖K‖ · 2O(‖τ‖)) for a general RegCTL formula.
The depth of AK,τ is O(‖τ‖). We note that AK,τ can be computed on-the-fly
in time linear with respect to its size.

Theorem 4.2 [8] The 1-letter nonemptiness problem for hesitant alternating
word automata is decidable in linear running time.

Theorem 4.3 [8] The 1-letter nonemptiness problem for hesitant alternating
word automata of size n and depth m is decidable in space O(m.log2n).

Applying these theorems we have that the model checking problem for
RegCTL is in PSPACE. The model checking problem for det-RegCTL is in
P (it can be done in time O(‖K‖.‖τ‖2). As the model checking of CTL is
P-complete we have that model checking of det-RegCTL is P-complete too.

The main limiting factor of model checking algorithms in practice is the
huge size of the Kripke structure. Therefore it is useful to consider the pro-
gram complexity as the complexity in terms of the size of the input Kripke
structure (assuming the size of the formula is fixed). It follows from The-
orem 4.3 and its proof that the program complexity of model checking of
RegCTL is in NLOGSPACE. As the program complexity of model checking
CTL is NLOGSPACE-complete [8] we have that RegCTL program complexity
of model checking is NLOGSPACE-complete too.

5 Distributed RegCTL Model Checking

The distributed algorithm is based on a characterisation of the model checking
problem in terms of two-person games due to Stirling [10]. This approach
has been used in [4] for model checking of alternation-free µ-calculus and
formulated as colouring of game graphs. As it is noted in [4], the procedure
can also be understood as a parallel procedure for checking the emptiness of
1-letter simple weak alternating word automata.

The product automaton AK,τ we have constructed in Section 3 is a 1-
letter weak alternating word automaton. We propose an algorithm for trans-
lating it into a simple automaton. Our algorithm is a modification of the
one from [8] and is more appropriate for the use in the distributed on-the-
fly setting. Consequently we can apply the local distributed model checking
algorithms from [4] to the logic RegCTL .

Definition 5.1 A formula in B+(X) is simple if it is either atomic or has
the form x ∗ y, where ∗ ∈ {∧,∨} and x, y ∈ X. An alternating automaton is
simple if all its transitions are simple.

Let AK,τ = 〈{a},W × Qτ , δ, 〈w0, q0〉,W × Fτ 〉 be the weak product au-
tomaton from Section 4. Let W × Q1, . . . ,W × Qm be the weak partition of

12

Brázdil, Černá

its states such that W × Q1 ≤ . . . ≤ W × Qm is an extension of the partial
order to a total order. Our aim is to translate AK,τ to a simple automaton
As

K,τ = 〈{a}, Qs, δs, 〈w0, q0〉, F s〉. We define Qs inductively as follows:

• For every q ∈ W ×Qτ , we have q ∈ Qs

• For every q ∈ W ×Qτ with δ(q, a) = θ1 ∗ θ2, we have θ1, θ2 ∈ Qs

• For every θ1 ∗ θ2 ∈ Qs, we have θ1, θ2 ∈ Qs

Thus a state in Qs is either q ∈ W ×Qτ or a strict subformula of a transition
in δ. The transition function δs is:

• δs(q, a) = δ(q, a) for q ∈ W ×Qτ

• δs(θ1 ∗ θ2, a) = θ1 ∗ θ2

We claim that the new automaton is weak as well. The partition of Qs into
Qs

1, . . . , Q
s
m is as follows. A state q ∈ Qs is in Qs

i iff either q ∈ W × Qi or
q = θ and i = max{j | r occurs in θ and r ∈ W × Qj}. The new acceptance
condition is F s =

⋃
Qs

i where W ×Qi ⊆ W × Fτ . The weakness of As
K,τ can

be easily seen from the definition of the partition. The fact L(AK,τ)
= ∅ iff
L(As

K,τ)
= ∅ can be argumented in the same way as in [8].
We note that the simple version of the product automaton can be computed

on-the-fly from the formula and the Kripke structure. The size of the simple
product automaton is asymptotically the same as the size of the original one.
The important fact is that the partition of the states of the simple automaton
can be computed on-the-fly as well using only the knowledge of the partition
of Aτ .

All in all, we have transformed the model checking problem of RegCTL
into the emptiness problem of 1-letter simple weak alternating word automata.
These automata are in a straightforward manner (as noted in [4]) related to
games and therefore we can use distributed algorithms from [4] for checking
the emptiness of this kind of automata.

6 Conclusions

We studied an extension of branching time logic CTL with regular expressions.
The resulting logic RegCTL is more expressive as the previous extension of
CTL with regular expressions. The model checking problem for RegCTL is in
PSPACE, but a large family of RegCTL formulas (including e.g. whole RCTL)
can be checked in P. Moreover, the adopted automata-theoretic approach to
model checking of RegCTL leads to an effective distribution.

The exact complexity of RegCTL model checking remains an open ques-
tion. Another interesting question would be whether RegCTL formulas can
be more succinct than their CTL counterparts.

13

Brázdil, Černá

References

[1] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic Sugar. In Proceedings of CAV’01, volume 2102 of Lecture Notes
in Computer Science, pages 363–367. Springer, 2001.

[2] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL
formulas. In Proceedings of CAV’98, volume 1427 of Lecture Notes in Computer
Science, pages 184–194. Springer, 1998.

[3] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time.
Acta Informatica, 20:207–226, 1983.

[4] B. Bollig, M. Leucker, and M. Weber. Local parallel model checking for the
alternation-free mu-calculus. In Proceedings of the 9th International SPIN
Workshop on Model checking of Software (SPIN ’02), volume 2318 of Lecture
Notes in Computer Science. Springer-Verlag Inc., 2002.

[5] K. Hamaguchi, H. Hiraishi, and S. Yajima. Branching time regular temporal
logic for model checking with linear time complexity. In Proceedings of CAV’90,
volume 531 of Lecture Notes in Computer Science, pages 253–262. Springer,
1991.

[6] J. Henriksen and P. Thiagarajan. Dynamic linear time temporal logic. Annals
of Pure and Applied Logic, 96(1–3):187–207, 1999.

[7] O. Kupferman, N. Piterman, and M. Vardi. Extended temporal logic revisited.
In Proceedings of CONCUR’01, volume 2154 of Lecture Notes in Computer
Science, pages 519–535. Springer, 2001.

[8] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching time model checking. Journal of the ACM, 47(2):312–360, 2000.

[9] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. In S. Gnesi, I. Schieferdecker, and A. Rennoch,
editors, Proceedings of FMICS’00, GMD Report 91, pages 65–86, April 2000.

[10] C. Stirling. Games for bisimulation and model checking. In Notes for Mathfit
Workshop on finite model theory. University of Wales, Swansea, 1996.

[11] M. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 1994.

14

