41 research outputs found

    Waste Brewery and Winery Yeast as a Raw Material for Biotechnological Productions

    Get PDF
    Yeast of the genus Saccharomyces is the most commonly used organism in the production of biotechnological products, and its amount produced in the production of beer and wine is enormous. It is reported that the worldwide annual production of both beverages entails the production of more than half a million tons of yeast, calculated on dry matter, the largest production of any microorganism worldwide. For this reason, it could be used as a potential secondary raw material. In the following review, we focus on the use of waste yeast biomass, particularly in terms of its processing into biofuels, especially biodiesel. Particular attention is also paid to the use of yeast as a source of sophisticated products, especially squalene and palmitoleic acid, an important raw material that can be used as a biodiesel additive, but also in cosmetic and dietetic products

    HPLC/MS triacylglycerols

    No full text
    History of triacylglycerols investigation was discussed

    Regioisomeric Analysis of Triacylglycerols

    No full text

    Brominated Depsidones from Acarospora gobiensis

    No full text

    Prenylated xanthone glucosides from Ural's lichen Umbilicaria proboscidea

    No full text
    Two new compounds isolated from an extract of a Central Asian lichen [Umbilicaria proboscidea (L.) Schrader=Syn.: Gyrophora proboscidea (L.) Ach.] are glucosides with mono- and di-prenylated xanthones as the aglycones and a saccharide moiety from two glucoses linked at C-7. The structures were elucidated on the basis of extensive spectroscopic analysis (1D and 2D NMR, MS, IR and UV) and by hydrolysis. Two new compounds (1, 2) isolated from an extract of a Central Asian lichen [Umbilicaria proboscidea (L.)] Schrader are glucosides with mono- and di-prenylated xanthones as the aglycones and a saccharide moiety from two glucoses linked at C-7. The structures were elucidated on the basis of extensive spectroscopic analysis (1D and 2D NMR, MS, IR and UV) and by hydrolysis

    Chiral analysis of glycerol phosphates - Can bacteria biosynthesize heterochiral phospholipid membranes?

    Get PDF
    Phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-glycerol) (PG) is one of the most abundant lipids in bacteria. However, the chirality of the carbon atom on glycerol phosphate is different between the three kingdoms, Archaea, Bacteria, and Eukarya. Archaea membranes consist of phospholipids with glycerol-1-phosphate (G1P) in the S configuration, whereas phospholipids of the other two kingdoms contain glycerol-3-phosphate (G3P) having R stereochemistry. In the present study, GC/MS and LC/MS methods sensitively detected G3P and G1P from four bacterial strains (Bacillus amyloliquefaciens, B. subtilis, Clavibacter michiganensis, and Geobacillus stearothermophilus). Strain selection was carried out based on a GenBank search that revealed bacterial sequences associated with both enzymes involved in glycerol-phosphate synthesis, i.e., glycerol-3-phosphate dehydrogenase and glycerol-1-phosphate dehydrogenase. The detection of G1P and G3P was made by comparing the retention times of synthetic standards with those of analyzed samples. The structures of both glycerol phosphates were confirmed by selected ion monitoring (SIM) at m/z 171.006. The total concentration of G3P and G1P was around 30 μM, with a ratio of G3P to G1P of 4:1. We showed that PG was the most abundant phospholipid in all four bacteria by using the following analytical techniques and chromatographic modes: hydrophilic interaction liquid chromatography (HILIC), reversed-phase high-performance liquid chromatography high-resolution electrospray ionization tandem mass spectrometry (RP-HPLC/HR-ESI tandem MS) in negative and positive ionization modes, and an enzymatic cleavage by phospholipase C. By using chiral chromatography, the presence of both enantiomers in the glycerol backbone of some molecular species of PG was revealed. These results allow us to conclude that the bacteria examined here produce both enantiomer glycerol phosphates

    Structural Characterization of Mono- and Dimethylphosphatidylethanolamines from Various Organisms Using a Complex Analytical Strategy including Chiral Chromatography

    No full text
    Two minor phospholipids, i.e., mono- and/or dimethylphosphatidylethanolamines, are widespread in many organisms, from bacteria to higher plants and animals. A molecular mixture of methyl-PE and dimethyl-PE was obtained from total lipids by liquid chromatography and further identified by mass spectrometry. Total methyl-PE and dimethyl-PE were cleaved by phospholipase C, and the resulting diacylglycerols, in the form of acetyl derivatives, were separated into alkyl-acyl, alkenyl-acyl, and diacylglycerols. Reversed-phase LC/MS allowed dozens of molecular species to be identified and further analyzed. This was performed on a chiral column, and identification by tandem positive ESI revealed that diacyl derivatives from all four bacteria were mixtures of both R and S enantiomers. The same applied to alkenyl-acyl derivatives of anaerobic bacteria. Analysis thus confirmed that some bacteria biosynthesize phospholipids having both sn-glycerol-3-phosphate and sn-glycerol-1-phosphate as precursors. These findings were further supported by data already published in GenBank. The use of chiral chromatography made it possible to prove that both enantiomers of glycerol phosphate of some molecular species of mono- and dimethylphosphatidylethanolamines are present. The result of the analysis can be interpreted that the cultured bacteria do not have homochiral membranes but, on the contrary, have an asymmetric, i.e., heterochiral membranes

    Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass

    No full text
    We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp.) and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae) as potential producers of dietetically important major fatty acids. The main objective was to examine the cultivation conditions that would induce a high ratio of dietary fatty acids and biomass. Though genus-dependent, the type of nitrogen source had a higher influence on biomass yield than the C/N ratio. The nitrogen source leading to the highest lipid accumulation was potassium nitrate, followed by ammonium sulfate, which is an ideal nitrogen source supporting, in both oleaginous and nonoleaginous species, sufficient biomass growth with concomitantly increased lipid accumulation. All yeast strains displayed high (70–90%) content of unsaturated fatty acids in total cell lipids. The content of dietary fatty acids of interest, namely, palmitoleic acid and linoleic acid, reached in Kluyveromyces and Trichosporon strains over 50% of total fatty acids and the highest yield, over 280 mg per g of dry cell weight of these fatty acids, was observed in Trichosporon with ammonium sulfate as nitrogen source at C/N ratio 70
    corecore