23 research outputs found

    Towards in vivo photomediated delivery of anticancer peptides: Insights from pharmacokinetic and -dynamic data

    Get PDF
    An in vivo study of a photoswitchable cytotoxic peptide LMB040 has been undertaken on a chemically induced hepatocellular carcinoma model in immunocompetent rats. We analysed the pharmacokinetic profile of the less toxic photoform (“ring-closed” dithienylethene) of the compound in tumors, plasma, and healthy liver. Accordingly, the peptide can reach a tumor concentration sufficiently high to exert a cytotoxic effect upon photoconversion into the more active (“ring-open”) photoform. Tissue morphology, histology, redox state of the liver, and hepatic biochemical parameters in blood serum were analysed upon treatment with (i) the less active photoform, (ii) the in vivo light-activated alternative photoform, and (iii) compared with a reference chemotherapeutic 5-fluorouracil. We found that application of the less toxic form followed by a delayed in vivo photoconversion into the more toxic ring-open form of LMB040 led to a higher overall survival of the animals, and signs of enhanced immune response were observed compared to the untreated animals

    Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson's disease in rats

    No full text
    Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting more than 1% of aged people. PD, which was previously identified as movement disorder, now is recognized as a multi-factorial systemic disease with important pathogenetic and pathophysiological role of inflammation. Reproducing local and systemic inflammation, which is inherent in PD, in animal models is essential for maximizing the translation of their potential to the clinic, as well as for developing putative anti-inflammatory neuroprotective agents. This study was aimed to compare activation patterns of microglia/macrophage population and systemic inflammation indices in rats with 6-Hydroxydopamine (6-OHDA)- and Lipopolysaccharide (LPS)-induced PD. Metabolic and phenotypic characteristics of microglia/macrophage population were examined by flow cytometry, systemic inflammatory markers were calculated using hematological parameters in 6-OHDA- and LPS-lesioned Wistar rats 29 days after the surgery.Microglia/macrophages from rats in both models exhibited pro-inflammatory metabolic shift. Nevertheless, in LPS-lesioned animals, highly increased proportion of CD80/86+ cells in microglia/macrophage population was registered alongside increased values of systemic inflammatory indices: neutrophil to lymphocyte ratio (NLR), derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio and systemic immune inflammation index (SII). There was significant positive correlation between the count of CD80/86+ cells and systemic inflammatory indices in these animals. Microglia/macrophages from 6-OHDA-lesioned rats were characterized by the increased fraction of CD206+ cells alongside decreased proportion of CD80/86+ cells. No signs of systemic inflammation were observed. Negative correlation between quantitation characteristics of CD80/86+ cells and values of systemic inflammatory indices was registered. Collectively, our data show that LPS-PD model unlike 6-OHDA-PD replicates crosstalk between local and systemic inflammatory responses, which is inherent in PD pathogenesis and pathophysiology

    Z: Mesalamine restores angiogenic balance in experimental ulcerative colitis by reducing expression of endostatin and angiostatin: novel molecular mechanism for therapeutic action of mesalamine

    No full text
    ABSTRACT Mesalamine (5-aminosalicylate acid, 5-ASA) is an effective treatment for ulcerative colitis (UC). The mechanisms of its actions are not fully understood. Because angiogenesis is critical for healing UC, we examined whether 5-ASA alters the angiogenic balance between angiogenic factors [e.g., vascular endothelial growth factor (VEGF)] and antiangiogenic factors (e.g., endostatin and angiostatin) in the colon in experimental UC. Rats were treated with saline or 5-ASA (100 mg/kg) twice daily and euthanized 3 or 7 days after iodoacetamide-induced UC. Clinical signs (e.g., lethargy, diarrhea) and UC lesions were measured. Expression of VEGF, endostatin, angiostatin, tissue necrosis factor ␣ (TNF-␣), and matrix metalloproteinases (MMPs) 2 and 9 was determined by Western blots, enzymelinked immunosorbent assay, and zymography in the distal colon. 5-ASA treatment reduced lethargy and diarrhea and significantly decreased colonic lesions (by ϳ50%) compared with saline treatment in UC (both, P Ͻ 0.05). 5-ASA did not reverse the increased levels of VEGF, but it significantly reduced expression of endostatin and angiostatin in UC compared with vehicle treatment (both, P Ͻ 0.05). Furthermore, 5-ASA treatment significantly diminished increased activity of TNF-␣ and MMP9 in UC. This is the first demonstration that 5-ASA treatment reverses an imbalance between the angiogenic factor VEGF and antiangiogenic factors endostatin and angiostatin in experimental UC. The effect of 5-ASA in UC may be caused by the down-regulation of expression of endostatin and angiostatin by modulation of MMP2 and MMP9 via inhibition of TNF␣. The inhibition of antiangiogenic factors may represent a novel molecular mechanism of the therapeutic action of 5-ASA
    corecore