2,461 research outputs found

    Macroscopic proof of the Jarzynski-Wojcik fluctuation theorem for heat exchange

    Full text link
    In a recent work, Jarzynski and Wojcik (2004 Phys. Rev. Lett. 92, 230602) have shown by using the properties of Hamiltonian dynamics and a statistical mechanical consideration that, through contact, heat exchange between two systems initially prepared at different temperatures obeys a fluctuation theorem. Here, another proof is presented, in which only macroscopic thermodynamic quantities are employed. The detailed balance condition is found to play an essential role. As a result, the theorem is found to hold under very general conditions.Comment: 9 pages, 0 figure

    Tolman mass, generalized surface gravity, and entropy bounds

    Full text link
    In any static spacetime the quasi-local Tolman mass contained within a volume can be reduced to a Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By introducing some basic thermodynamics and invoking the Unruh effect one can then develop elementary bounds on the quasi-local entropy that are very similar in spirit to the holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some notational changes for clarity; introductory paragraph rewritten; no physics changes. This version accepted for publication in Physical Review Letter

    Planck Fluctuations, Measurement Uncertainties and the Holographic Principle

    Full text link
    Starting from a critical analysis of recently reported surprisingly large uncertainties in length and position measurements deduced within the framework of quantum gravity, we embark on an investigation both of the correlation structure of Planck scale fluctuations and the role the holographic hypothesis is possibly playing in this context. While we prove the logical independence of the fluctuation results and the holographic hypothesis (in contrast to some recent statements in that direction) we show that by combining these two topics one can draw quite strong and interesting conclusions about the fluctuation structure and the microscopic dynamics on the Planck scale. We further argue that these findings point to a possibly new and generalized form of quantum statistical mechanics of strongly (anti)correlated systems of degrees of freedom in this fundamental regime.Comment: 19 pages, Latex, no figures, some new references, to appear ModPhysLett

    Gravitational energy

    Full text link
    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.Comment: 12 pages. Accepted for publication in Class. Quantum Gra

    Fluctuation theorem for the renormalized entropy change in the strongly nonlinear nonequilibrium regime

    Full text link
    Generalizing a recent work [T. Taniguchi and E. G. D. Cohen, J. Stat. Phys. 126, 1 (2006)] that was based on the Onsager-Machlup theory, a nonlinear relaxation process is considered for a macroscopic thermodynamic quantity. It is found that the fluctuation theorem holds in the nonlinear nonequilibrium regime if the change of the entropy characterized by local equilibria is appropriately renormalized. The fluctuation theorem for the ordinary entropy change is recovered in the linear near-equilibrium case. This result suggests a possibility that the the information-theoretic entropy of the Shannon form may be modified in the strongly nonlinear nonequilibrium regime.Comment: 14 pages, no figures. Typos correcte

    On the stable configuration of ultra-relativistic material spheres. The solution for the extremely hot gas

    Full text link
    During the last stage of collapse of a compact object into the horizon of events, the potential energy of its surface layer decreases to a negative value below all limits. The energy-conservation law requires an appearance of a positive-valued energy to balance the decrease. We derive the internal-state properties of the ideal gas situated in an extremely strong, ultra-relativistic gravitational field and suggest to apply our result to a compact object with the radius which is slightly larger than or equal to the Schwarzschild's gravitational radius. On the surface of the object, we find that the extreme attractivity of the gravity is accompanied with an extremely high internal, heat energy. This internal energy implies a correspondingly high pressure, the gradient of which has such a behavior that it can compete with the gravity. In a more detail, we find the equation of state in the case when the magnitude of the potential-type energy of constituting gas particles is much larger than their rest energy. This equation appears to be identical with the general-relativity condition of the equilibrium between the gravity and pressure gradient. The consequences of the identity are discussed.Comment: 12 pages (no figure, no table) Changes in 3-rd version: added an estimate of neutrino cooling and relative time-scale of the final stage of URMS collaps

    Papapetrou Energy-Momentum Tensor for Chern-Simons Modified Gravity

    Get PDF
    We construct a conserved, symmetric energy-momentum (pseudo-)tensor for Chern-Simons modified gravity, thus demonstrating that the theory is Lorentz invariant. The tensor is discussed in relation to other gravitational energy-momentum tensors and analyzed for the Schwarzschild, Reissner-Nordstrom, and FRW solutions. To our knowledge this is the first confirmation that the Reissner-Nordstrom and FRW metrics are solutions of the modified theory.Comment: 8 pages; typos corrected, references fixed, some calculations shortene

    Statistical mechanical theory of an oscillating isolated system. The relaxation to equilibrium

    Get PDF
    In this contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion in general and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n=0,......., N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function

    Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    Full text link
    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point radiation and relativistic physics enter in an essential way in the derivation which is based upon the behavior of free radiation fields and the assumption that the field correlation functions contain but a single correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration found in relativistic quantum field theory.Comment: 23 page

    Integral Constraints On cosmological Perturbations and their Energy

    Full text link
    We show the relation between Traschen's integral equations and the energy, and ``position of the centre of mass'', of the matter perturbations in a Robertson-Walker spacetime. When the perturbations are ``localised'' we get a set of integral constraints that includes hers. We illustrate them on a simple example.Comment: 19 pages, Tex file, submitted to Classical and Quantum Gravit
    corecore