2,053 research outputs found

    The gravity of magnetic stresses and energy

    Full text link
    In the framework of designing laboratory tests of relativistic gravity, we investigate the gravitational field produced by the magnetic field of a solenoid. Observing this field might provide a mean of testing whether stresses gravitate as predicted by Einstein's theory. A previous study of this problem by Braginsky, Caves and Thorne predicted that the contribution to the gravitational field resulting from the stresses of the magnetic field and of the solenoid walls would cancel the gravitational field produced by the mass-energy of the magnetic field, resulting in a null magnetically-generated gravitational force outside the solenoid. They claim that this null result, once proved experimentally, would demonstrate the stress contribution to gravity. We show that this result is incorrect, as it arises from an incomplete analysis of the stresses, which neglects the axial stresses in the walls. Once the stresses are properly evaluated, we find that the gravitational field outside a long solenoid is in fact independent of Maxwell and material stresses, and it coincides with the newtonian field produced by the linear mass distribution equivalent to the density of magnetic energy stored in a unit length of the solenoid. We argue that the gravity of Maxwell stress can be directly measured in the vacuum region inside the solenoid, where the newtonian noise is absent in principle, and the gravity generated by Maxwell stresses is not screened by the negative gravity of magnetic-induced stresses in the solenoid walls.Comment: 10 pages, final version accepted for publication in PR

    The Tolman-Bondi--Vaidya Spacetime: matching timelike dust to null dust

    Full text link
    The Tolman-Bondi and Vaidya solutions are two solutions to Einstein equations which describe dust particles and null fluid, respectively. We show that it is possible to match the two solutions in one single spacetime, the Tolman-Bondi--Vaidya spacetime. The new spacetime is divided by a null surface with Tolman-Bondi dust on one side and Vaidya fluid on the other side. The differentiability of the spacetime is discussed. By constructing a specific solution, we show that the metric across the null surface can be at least C1C^1 and the stress-energy tensor is continuous.Comment: 5 pages, no figur

    Planck Fluctuations, Measurement Uncertainties and the Holographic Principle

    Full text link
    Starting from a critical analysis of recently reported surprisingly large uncertainties in length and position measurements deduced within the framework of quantum gravity, we embark on an investigation both of the correlation structure of Planck scale fluctuations and the role the holographic hypothesis is possibly playing in this context. While we prove the logical independence of the fluctuation results and the holographic hypothesis (in contrast to some recent statements in that direction) we show that by combining these two topics one can draw quite strong and interesting conclusions about the fluctuation structure and the microscopic dynamics on the Planck scale. We further argue that these findings point to a possibly new and generalized form of quantum statistical mechanics of strongly (anti)correlated systems of degrees of freedom in this fundamental regime.Comment: 19 pages, Latex, no figures, some new references, to appear ModPhysLett

    Failure of the work-Hamiltonian connection for free energy calculations

    Get PDF
    Extensions of statistical mechanics are routinely being used to infer free energies from the work performed over single-molecule nonequilibrium trajectories. A key element of this approach is the ubiquitous expression dW/dt=\partial H(x,t)/ \partial t which connects the microscopic work W performed by a time-dependent force on the coordinate x with the corresponding Hamiltonian H(x,t) at time t. Here we show that this connection, as pivotal as it is, cannot be used to estimate free energy changes. We discuss the implications of this result for single-molecule experiments and atomistic molecular simulations and point out possible avenues to overcome these limitations

    Energy dependence on fractional charge for strongly interacting subsystems

    Full text link
    The energies of a pair of strongly-interacting subsystems with arbitrary noninteger charges are examined from closed and open system perspectives. An ensemble representation of the charge dependence is derived, valid at all interaction strengths. Transforming from resonance-state ionicity to ensemble charge dependence imposes physical constraints on the occupation numbers in the strong-interaction limit. For open systems, the chemical potential is evaluated using microscopic and thermodynamic models, leading to a novel correlation between ground-state charge and an electronic temperature.Comment: 4 pages, 3 figs.; as accepted (Phys. Rev. Lett.

    Comment on "Failure of the work-Hamiltonian connection for free-energy calculations" by Jose M. G. Vilar and J. Miguel Rubi

    Full text link
    I point out that the arguments raised by Vilar and Rubi against the work-Hamiltonian connection in free-energy calculations imply, if correct, the failure of the statistical mechanical expression of the thermodynamical free-energy via the logarithm of the partition function.Comment: To appear in Physical Review Letter

    Quantum Macrostates, Equivalence of Ensembles and an H-Theorem

    Full text link
    Before the thermodynamic limit, macroscopic averages need not commute for a quantum system. As a consequence, aspects of macroscopic fluctuations or of constrained equilibrium require a careful analysis, when dealing with several observables. We propose an implementation of ideas that go back to John von Neumann's writing about the macroscopic measurement. We apply our scheme to the relation between macroscopic autonomy and an H-theorem, and to the problem of equivalence of ensembles. In particular, we show how the latter is related to the asymptotic equipartition theorem. The main point of departure is an expression of a law of large numbers for a sequence of states that start to concentrate, as the size of the system gets larger, on the macroscopic values for the different macroscopic observables. Deviations from that law are governed by the entropy.Comment: 16 pages; v1 -> v2: Sec. 3 slightly rewritten, 2 references adde

    More examples of structure formation in the Lemaitre-Tolman model

    Full text link
    In continuing our earlier research, we find the formulae needed to determine the arbitrary functions in the Lemaitre-Tolman model when the evolution proceeds from a given initial velocity distribution to a final state that is determined either by a density distribution or by a velocity distribution. In each case the initial and final distributions uniquely determine the L-T model that evolves between them, and the sign of the energy-function is determined by a simple inequality. We also show how the final density profile can be more accurately fitted to observational data than was done in our previous paper. We work out new numerical examples of the evolution: the creation of a galaxy cluster out of different velocity distributions, reflecting the current data on temperature anisotropies of CMB, the creation of the same out of different density distributions, and the creation of a void. The void in its present state is surrounded by a nonsingular wall of high density.Comment: LaTeX 2e with eps figures. 30 pages, 11 figures, 30 figure files. Revision matches published versio

    Black Hole Evaporation in an Expanding Universe

    Full text link
    We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order 105(M/106M)1/3(t/14Gyr)1/310^{-5} (M/10^{6}M_{\odot})^{1/3} (t/14 {Gyr})^{-1/3} but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes.Comment: Accepted for publication in Class.Quant.Grav., 18 pages and 3 figure

    Gyratons on Melvin spacetime

    Full text link
    We present and analyze new exact gyraton solutions of algebraic type II on a background which is static, cylindrically symmetric Melvin universe of type D. For a vanishing electromagnetic field it reduces to previously studied gyratons on Minkowski background. We demonstrate that the solutions are member of a more general family of the Kundt spacetimes. We show that the Einstein equations reduce to a set of mostly linear equations on a transverse 2-space and we discuss the properties of polynomial scalar curvature invariants which are generally non-constant but unaffected by the presence of gyratons.Comment: 15 pages, no figures, journal version extended by appendices B and
    corecore