369 research outputs found

    Development of Small and Medium-Sized Regional Enterprises: Creation of Priority Areas (the Case of Sverdlovsk Region)

    Full text link
    This article presents the results of the research which deals with the current level of development of small and medium enterprises (SMEs) in Sverdlovsk region. The study analyses the statistics of entrepreneurship development as well as Russian and international experience in this sphere. It also includes a sociological survey of entrepreneurs’ satisfaction with the business climate in the region. The research was aimed at elaborating guidelines for the long-term development of a regional entrepreneurship support system. This system seeks to facilitate the implementation of the β€˜Strategy for the Development of Small and Medium Enterprises in Sverdlovsk Region before 2030’. As a result, an amalgam of strategic responses for the development of SMEs is presented. The completed response comprises measures intended to address the problems entrepreneurs face by developing SME support tools; to solve the endemic problems of the sector by improving the system of regional SME support; and to promote the realization of concrete priority areas for entrepreneurship development.The research work was carried out in collaboration with the Ural Federal University n.a. the First President of Russia B. N. Yeltsin and OOO β€œAnalytical Centre Expert-Ural’” at the request of Sverdlovsk Regional Entrepreneurship Support Fund. The research was conducted in the period of September-November 2014. The state programme of Sverdlovsk region β€˜Development of Industry and Science in Sverdlovsk Region Before 2020’ (approved by the Order of Sverdlovsk government of 24 October 2013 β„– 1293-ПП)

    All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide

    Full text link
    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28^{28}SiC) and find extra terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which are otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity of 87 nT Hzβˆ’1/2^{-1/2} within a volume of 3Γ—10βˆ’73 \times 10^{-7} mm3^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radiofrequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3^{3} the projection noise limit is below 100 fT Hzβˆ’1/2^{-1/2}.Comment: 12 pages, 6 figures; additional experimental data and an extended theoretical analysis are added in the second versio

    Index of Russian Universities Inventive Activities - 2023

    Full text link
    АналитичСский Ρ†Π΅Π½Ρ‚Ρ€ «ЭкспСрт» ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ» сСдьмой Ρ€Π΅ΠΉΡ‚ΠΈΠ½Π³ «ИндСкс ΠΈΠ·ΠΎΠ±Ρ€Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ активности российских унивСрситСтов». Анализ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ 22 тыс. ΠΏΠ°Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… заявок ΠΎΡ‚ 170 Π²ΡƒΠ·ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Π»ΠΈΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ унивСрситСты Π² области ΠΈΠ·ΠΎΠ±Ρ€Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ активности Π² России. Π’ Ρ…ΠΎΠ΄Π΅ исслСдования ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡ€Π°Ρ†ΠΈΠΈ Π²ΡƒΠ·ΠΎΠ² ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠΎΠΌΠΌΠ΅Ρ€Ρ†ΠΈΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ°Ρ‚Π΅Π½Ρ‚ΠΎΠ² ΠΊΠ°ΠΊ Π² ΠΎΠ±Ρ‰Π΅ΠΌ объСмС, Ρ‚Π°ΠΊ ΠΈ Π² срСзС ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚ΠΎΠ² Π½Π°ΡƒΡ‡Π½ΠΎ-тСхнологичСского развития Π Π€.The Analytical Center Expert published the 7th ranking β€œIndex of Russian Universities Inventive Activities”. The analysis of more than 22000 patent applications from 170 universities allowed for identifying the leading inventive universities in Russia. The research included analysis of universities collaborations and patent commercialization dynamics in total, as well as separately by the priority areas of research and development in Russia

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ транспортной систСмы Π½Π° основС Π°Π½Π°Π»ΠΎΠ³ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄ΠΎΡ€ΠΎΠΆΠ½Ρ‹ΠΌΠΈ сСтями ΠΈ элСктричСскими цСпями

    Full text link
    Π”Π°Ρ‚Π° поступлСния 10 апрСля 2019 Π³.; Π΄Π°Ρ‚Π° принятия ΠΊ ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ 3 июня 2019 Π³.Received April 10, 2019; accepted June 3, 2019.This article describes a probabilistic mathematical model which can be used to analyse traffic flows in a road network. This model allows us to calculate the probability of distribution of vehicles in a regional road network or an urban street network. In the model, the movement of cars is treated as a Markov process. This makes it possible to formulate an equation determining the probability of finding cars at key points of the road network such as street intersections, parking lots or other places where cars concentrate. For a regional road network, we can use cities as such key points. This model enables us, for instance, to use the analogues of Kirchhoff First Law (Ohm’s Law) for calculation of traffic flows. This calculation is based on the similarity of a real road network and resistance in an electrical circuit. The traffic flow is an analogue of the electric current, the resistance of the section between the control points is the time required to move from one key point to another, and the voltage is the difference in the number of cars at these points. In this case, well-known methods for calculating complex electrical circuits can be used to calculate traffic flows in a real road network. The proposed model was used to calculate the critical load for a road network and compare road networks in various regions of the Ural Federal District.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° вСроятностная матСматичСская модСль, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ транспортныС ΠΏΠΎΡ‚ΠΎΠΊΠΈ Π² Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти. Π­Ρ‚Π° модСль позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ распрСдСлСния транспортных срСдств ΠΏΠΎ Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти Ρ€Π΅Π³ΠΈΠΎΠ½Π° ΠΈΠ»ΠΈ ΡƒΠ»ΠΈΡ‡Π½ΠΎ-Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти Π³ΠΎΡ€ΠΎΠ΄Π°. Π’ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ трактуСтся ΠΊΠ°ΠΊ марковский процСсс. Π­Ρ‚ΠΎ позволяСт ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π΅Π΅ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ нахоТдСния Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти. Π’ качСствС Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€: пСрСсСчСниС ΡƒΠ»ΠΈΡ† Π² Π³ΠΎΡ€ΠΎΠ΄Π°Ρ…, ΠΏΠ°Ρ€ΠΊΠΎΠ²ΠΊΠΈ ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ мСста скоплСния Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ. Π’ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ сСти Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ Π² качСствС Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π³ΠΎΡ€ΠΎΠ΄Π°. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этой ΠΌΠΎΠ΄Π΅Π»ΠΈ Π±Ρ‹Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π°, Π² частности, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π°Π½Π°Π»ΠΎΠ³ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠšΠΈΡ€Ρ…Π³ΠΎΡ„Π° (Π·Π°ΠΊΠΎΠ½Π° Ома) для расчСта транспортных ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ². Π­Ρ‚ΠΎΡ‚ расчСт основан Π½Π° эквивалСнтности Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти элСктричСским цСпям сопротивлСний. Вранспортный ΠΏΠΎΡ‚ΠΎΠΊ являСтся Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ элСктричСского Ρ‚ΠΎΠΊΠ°, сопротивлСниС участка ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ - это врСмя, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Ρ€ΡƒΠ³ΡƒΡŽ, напряТСниС - это Ρ€Π°Π·Π½ΠΈΡ†Π° Π² количСствС Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² этих Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…. Π’ этом случаС для расчСта транспортных ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ общСизвСстныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ расчСта слоТных элСктричСских Ρ†Π΅ΠΏΠ΅ΠΉ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ модСль использовалась для расчСта критичСской Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π² Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти ΠΈ сравнСния Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎΠΉ сСти Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… областях Π£Ρ€Π°Π»ΡŒΡΠΊΠΎΠ³ΠΎ Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡ€ΡƒΠ³Π° ΠΏΠΎ этому ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŽ

    Most Sought-After Professional Competencies in Leading Research Teams of the Ural Federal District

    Get PDF
    At the current stage of socio-economic development, one of the key tasks is to ensure that education quality matches labour market expectations, and the industry of science and technology is no exception. Nowadays, there is no systemic evaluation and due regard of research staffing needs and competencies required in this field. Hence, the gap between the current level of human capital development and its necessary level is ever increasing. This study focuses on leading research teams working in the area of advanced manufacturing technologies. The main research methods are the following: publication activity analysis for organizations in the Ural Federal District (henceforth UFD) in the field of advanced manufacturing, bibliometric mapping for identifying research teams, a series of in-depth interviews with research team leaders, job postings analysis using HeadHunter website database. Key findings: 1) we developed a methodology to identify leading research teams in the UFD that possess unique research and technology competencies in the field of advances manufacturing technologies; such teams and their leaders were identified; 2) in-depth interviews with research team leaders allowed to determine the most sought-after competencies for young researchers; 3) we compared the results of qualitative analysis (the in-depth interviews) with the final list of required competencies obtained in the process of analyzing job postings in the area of advanced technology in the UFD using the HeadHunter website. Thus, we identified the pools of the most sought-after competencies for the research and manufacturing sectors in the field of advanced manufacturing technologies. Identifying the most sought-after and in-demand competencies in theΒ  UFD leading research teams can inform decision-making on updating university study programmes to ensure that student training matches the needs of the industry of science and technology in the UFD

    Index of Inventive Activity of Russian Universities - 2022

    Full text link
    АналитичСский Ρ†Π΅Π½Ρ‚Ρ€ «ЭкспСрт» ΠΏΠΎΠ΄Π²Π΅Π» ΠΈΡ‚ΠΎΠ³ΠΈ ΡˆΠ΅ΡΡ‚ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ исслСдования ΠΏΠ°Ρ‚Π΅Π½Ρ‚Π½ΠΎΠΉ активности российских унивСрситСтов. Π­Ρ‚ΠΎ Ρ‡Π°ΡΡ‚ΡŒ комплСксного ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°, Π·Π°ΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ Π² 2016 Π³ΠΎΠ΄Ρƒ с Ρ†Π΅Π»ΡŒΡŽ ΠΎΡ†Π΅Π½ΠΊΠΈ Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΈ тСхнологичСских ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ†ΠΈΠΈ Π²ΡƒΠ·ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ уровня ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΡ… способностСй ΠΈΡ… выпускников.The analytical center Β«ExpertΒ» summed up the results of the sixth wave of research on the Russian universities’ patent activity. This is part of a comprehensive project launched in 2016 to assess the scientific and technological competence of universities, as well as the level of their graduates’ entrepreneurial abilities

    Methodology for identifying the boundaries of agglomerations based on statistical data

    Get PDF
    Высокая диффСрСнциация уровня развития ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ являСтся Π²Π°ΠΆΠ½Ρ‹ΠΌ прСпятствиСм для устойчивого Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ развития ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² страны. Бинхронизация Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… стратСгий развития ΠΈ ΠΏΠ»Π°Π½ΠΎΠ² ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ осущСствлСна ΠΈΠ·-Π·Π° большого количСства ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ области, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… Π½Π΅ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰ΠΈΠ΅ΡΡ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ стратСгии развития. ΠŸΡ€ΠΈ этом Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ ΠΏΠ»Π°Π½Ρ‹ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΈΠ·-Π·Π° отсутствия Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… рСсурсов. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ этих ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π±Ρ‹Π»ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² (ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ† систСмы рассСлСния), ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹Π΅ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-экономичСскиС связи, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ схоТиС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» развития. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° выдСлСния ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ† систСмы рассСлСния ΠΈ ΠΎΠΏΡ‹Ρ‚ Π΅Π΅ примСнСния. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π±Ρ‹Π»Π° основана Π½Π° статистичСских показатСлях ΠΈ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ доступны Π½Π° ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅. Для ΠΎΡ†Π΅Π½ΠΊΠΈ взаимосвязи ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ 6 статистичСских ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-экономичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΈ 1 комплСксный - Π²Π°Π»ΠΎΠ²Ρ‹ΠΉ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚. Π Π°Π·Π½ΠΈΡ†Π° Π² ΡƒΡ€ΠΎΠ²Π½Π΅ развития ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² ΠΏΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ 6 показатСлям дСмонстрировала притяТСниС ΠΌΠ΅Π½Π΅Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠ³ΠΎ ΠΏΠΎ Π½ΠΈΠΌ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚Π° ΠΊ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠΌΡƒ. Π Π°Π·ΠΌΠ΅Ρ€ Π²Π°Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° использовался для ΡƒΡ‡Π΅Ρ‚Π° высокого Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ притяТСния ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ). РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚Π°ΠΌΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»ΠΎ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ влияниС. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ Π½Π°Π±ΠΎΡ€ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π°ΠΊΡ‚ΡƒΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π» вопрос ΠΎΠ± ΠΈΡ… достаточности для Π½Π°Π΄Π΅ΠΆΠ½ΠΎΠ³ΠΎ выдСлСния ΠΌΠ΅ΠΆΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΡŒΠ½Ρ‹Ρ… взаимосвязСй. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΠ΅ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ эмпиричСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ рассСлСнии насСлСния ΠΈ фактичСской маятниковой ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚Π°ΠΌΠΈ Ρ€Π΅Π³ΠΈΠΎΠ½Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ сравнСния расчСтов ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ фактичСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ взаимосвязях ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ…ΠΎΠΆΠ΅ΡΡ‚ΡŒ. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ°ΡΡΡ Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠ° ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ 21 ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ систСмы рассСлСния Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ БвСрдловской области. ΠŸΡ€ΠΈ этом получСнная Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ основой для выдСлСния ΡƒΠΊΡ€ΡƒΠΏΠ½Π΅Π½Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ взаимосвязанных ΠΌΡƒΠ½ΠΈΡ†ΠΈΠΏΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΎΠ² Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для БвСрдловской области, Π½ΠΎ ΠΈ для Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² страны.Significant difference in development between the municipalities is an obstacle for achieving economic sustainability in many Russian regions. Regional development strategies and plans of various municipalities often cannot be synchronised because of their incompatibility. Moreover, municipalities usually lack necessary resources to implement their strategies. To solve these problems, we identified groups of municipalities (key units of the settlement system (KUSS)) based on the existing socio-economic relations, common challenges and development potential. We propose a methodology for identifying KUSS and describe its application. This methodology relies on statistical data available at the municipal level. To assess the interconnection of municipalities, we used 6 statistical socio-economic indicators and 1 integrated index of Gross Municipal Product (GMP). The difference in the first 6 indicators of the development of municipalities demonstrated, that less developed municipalities tend to more developed ones. We used the values of gross municipal product to define high mutual attraction of large municipalities (similar to the gravity model). The distance between municipalities reduced their mutual influence. Due to the limited data set, it was necessary to consider the reliability of the identified inter-municipal relations. Thus, we compared the obtained results with empirical data on population distribution and circular migration between municipalities in the region. The comparison of our calculations and actual data showed high precision of the presented methodology. The resulting grouping of municipalities allowed identifying 21 key units of the settlement system in Sverdlovsk oblast. The proposed methodology can be usedfor determining large groups of municipalities in Sverdlovsk oblast, as well as in other Russian regions.Π Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° экономики ΠΈ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ развития БвСрдловской области.The article has been prepared with the support of the Ministry of Economy and Territorial Development of Sverdlovsk oblast

    Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example

    Get PDF
    We study a simple system described by a 2x2 Hamiltonian and the evolution of the quantum states under the influence of a perturbation. More precisely, when the initial Hamiltonian is not degenerate,we check analytically the validity of the adiabatic approximation and verify that, even if the evolution operator has no limit for adiabatic switchings, the Gell-Mann and Low formula allows to follow the evolution of eigenstates. In the degenerate case, for generic initial eigenstates, the adiabatic approximation (obtained by two different limiting procedures) is either useless or wrong, and the Gell-Mann and Low formula does not hold. We show how to select initial states in order to avoid such failures.Comment: 6 pages, 2 figure
    • …
    corecore