369 research outputs found
Development of Small and Medium-Sized Regional Enterprises: Creation of Priority Areas (the Case of Sverdlovsk Region)
This article presents the results of the research which deals with the current level of development of small and medium enterprises (SMEs) in Sverdlovsk region. The study analyses the statistics of entrepreneurship development as well as Russian and international experience in this sphere. It also includes a sociological survey of entrepreneursβ satisfaction with the business climate in the region. The research was aimed at elaborating guidelines for the long-term development of a regional entrepreneurship support system. This system seeks to facilitate the implementation of the βStrategy for the Development of Small and Medium Enterprises in Sverdlovsk Region before 2030β. As a result, an amalgam of strategic responses for the development of SMEs is presented. The completed response comprises measures intended to address the problems entrepreneurs face by developing SME support tools; to solve the endemic problems of the sector by improving the system of regional SME support; and to promote the realization of concrete priority areas for entrepreneurship development.The research work was carried out in collaboration with the Ural Federal University n.a. the First President of Russia B. N. Yeltsin and OOO βAnalytical Centre Expert-Uralββ at the request of Sverdlovsk Regional Entrepreneurship Support Fund. The research was conducted in the period of September-November 2014. The state programme of Sverdlovsk region βDevelopment of Industry and Science in Sverdlovsk Region Before 2020β (approved by the Order of Sverdlovsk government of 24 October 2013 β 1293-ΠΠ)
All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide
We uncover the fine structure of a silicon vacancy in isotopically purified
silicon carbide (4H-SiC) and find extra terms in the spin Hamiltonian,
originated from the trigonal pyramidal symmetry of this spin-3/2 color center.
These terms give rise to additional spin transitions, which are otherwise
forbidden, and lead to a level anticrossing in an external magnetic field. We
observe a sharp variation of the photoluminescence intensity in the vicinity of
this level anticrossing, which can be used for a purely all-optical sensing of
the magnetic field. We achieve dc magnetic field sensitivity of 87 nT
Hz within a volume of mm at room temperature
and demonstrate that this contactless method is robust at high temperatures up
to at least 500 K. As our approach does not require application of
radiofrequency fields, it is scalable to much larger volumes. For an optimized
light-trapping waveguide of 3 mm the projection noise limit is below 100
fT Hz.Comment: 12 pages, 6 figures; additional experimental data and an extended
theoretical analysis are added in the second versio
Index of Russian Universities Inventive Activities - 2023
ΠΠ½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅Π½ΡΡ Β«ΠΠΊΡΠΏΠ΅ΡΡΒ» ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΠ» ΡΠ΅Π΄ΡΠΌΠΎΠΉ ΡΠ΅ΠΉΡΠΈΠ½Π³ Β«ΠΠ½Π΄Π΅ΠΊΡ ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ°ΡΠ΅Π»ΡΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠΎΠ²Β». ΠΠ½Π°Π»ΠΈΠ· Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ 22 ΡΡΡ. ΠΏΠ°ΡΠ΅Π½ΡΠ½ΡΡ
Π·Π°ΡΠ²ΠΎΠΊ ΠΎΡ 170 Π²ΡΠ·ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²ΡΠ΄Π΅Π»ΠΈΡΡ Π»ΠΈΠ΄ΠΈΡΡΡΡΠΈΠ΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ°ΡΠ΅Π»ΡΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π² Π ΠΎΡΡΠΈΠΈ. Π Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠΈ Π²ΡΠ·ΠΎΠ² ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠΎΠΌΠΌΠ΅ΡΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ΅Π½ΡΠΎΠ² ΠΊΠ°ΠΊ Π² ΠΎΠ±ΡΠ΅ΠΌ ΠΎΠ±ΡΠ΅ΠΌΠ΅, ΡΠ°ΠΊ ΠΈ Π² ΡΡΠ΅Π·Π΅ ΠΏΡΠΈΠΎΡΠΈΡΠ΅ΡΠΎΠ² Π½Π°ΡΡΠ½ΠΎ-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π Π€.The Analytical Center Expert published the 7th ranking βIndex of Russian Universities Inventive Activitiesβ. The analysis of more than 22000 patent applications from 170 universities allowed for identifying the leading inventive universities in Russia. The research included analysis of universities collaborations and patent commercialization dynamics in total, as well as separately by the priority areas of research and development in Russia
ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π΄ΠΎΡΠΎΠΆΠ½ΡΠΌΠΈ ΡΠ΅ΡΡΠΌΠΈ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ΅ΠΏΡΠΌΠΈ
ΠΠ°ΡΠ° ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ 10 Π°ΠΏΡΠ΅Π»Ρ 2019 Π³.; Π΄Π°ΡΠ° ΠΏΡΠΈΠ½ΡΡΠΈΡ ΠΊ ΠΏΠ΅ΡΠ°ΡΠΈ 3 ΠΈΡΠ½Ρ 2019 Π³.Received April 10, 2019; accepted June 3, 2019.This article describes a probabilistic mathematical model which can be used to analyse traffic flows in a road network. This model allows us to calculate the probability of distribution of vehicles in a regional road network or an urban street network. In the model, the movement of cars is treated as a Markov process. This makes it possible to formulate an equation determining the probability of finding cars at key points of the road network such as street intersections, parking lots or other places where cars concentrate. For a regional road network, we can use cities as such key points. This model enables us, for instance, to use the analogues of Kirchhoff First Law (Ohmβs Law) for calculation of traffic flows. This calculation is based on the similarity of a real road network and resistance in an electrical circuit. The traffic flow is an analogue of the electric current, the resistance of the section between the control points is the time required to move from one key point to another, and the voltage is the difference in the number of cars at these points. In this case, well-known methods for calculating complex electrical circuits can be used to calculate traffic flows in a real road network. The proposed model was used to calculate the critical load for a road network and compare road networks in various regions of the Ural Federal District.ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ°Ρ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΠ΅ ΠΏΠΎΡΠΎΠΊΠΈ Π² Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ. ΠΡΠ° ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² ΠΏΠΎ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ ΡΠ΅Π³ΠΈΠΎΠ½Π° ΠΈΠ»ΠΈ ΡΠ»ΠΈΡΠ½ΠΎ-Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ Π³ΠΎΡΠΎΠ΄Π°. Π ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ ΡΡΠ°ΠΊΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΌΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² ΠΊΠ»ΡΡΠ΅Π²ΡΡ
ΡΠΎΡΠΊΠ°Ρ
Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°ΠΊΠΈΡ
ΠΊΠ»ΡΡΠ΅Π²ΡΡ
ΡΠΎΡΠ΅ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ: ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ»ΠΈΡ Π² Π³ΠΎΡΠΎΠ΄Π°Ρ
, ΠΏΠ°ΡΠΊΠΎΠ²ΠΊΠΈ ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΠΌΠ΅ΡΡΠ° ΡΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ. Π ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΡ
Π΄ΠΎΡΠΎΠ³ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°ΠΊΠΈΡ
ΠΊΠ»ΡΡΠ΅Π²ΡΡ
ΡΠΎΡΠ΅ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π³ΠΎΡΠΎΠ΄Π°. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π±ΡΠ»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π°, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΠΈΡΡ
Π³ΠΎΡΠ° (Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°) Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ². ΠΡΠΎΡ ΡΠ°ΡΡΠ΅Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ΅ΠΏΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ. Π’ΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΠΉ ΠΏΠΎΡΠΎΠΊ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ - ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ΅ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ»ΡΡΠ΅Π²ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π² Π΄ΡΡΠ³ΡΡ, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ - ΡΡΠΎ ΡΠ°Π·Π½ΠΈΡΠ° Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² ΡΡΠΈΡ
ΡΠΎΡΠΊΠ°Ρ
. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ² Π² ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΎΠ±ΡΠ΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΏΠ΅ΠΉ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»Π°ΡΡ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ Π² Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΡΠΈ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΠ±Π»Π°ΡΡΡΡ
Π£ΡΠ°Π»ΡΡΠΊΠΎΠ³ΠΎ Π€Π΅Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡΡΠ³Π° ΠΏΠΎ ΡΡΠΎΠΌΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ
Most Sought-After Professional Competencies in Leading Research Teams of the Ural Federal District
At the current stage of socio-economic development, one of the key tasks is to ensure that education quality matches labour market expectations, and the industry of science and technology is no exception. Nowadays, there is no systemic evaluation and due regard of research staffing needs and competencies required in this field. Hence, the gap between the current level of human capital development and its necessary level is ever increasing. This study focuses on leading research teams working in the area of advanced manufacturing technologies. The main research methods are the following: publication activity analysis for organizations in the Ural Federal District (henceforth UFD) in the field of advanced manufacturing, bibliometric mapping for identifying research teams, a series of in-depth interviews with research team leaders, job postings analysis using HeadHunter website database. Key findings: 1) we developed a methodology to identify leading research teams in the UFD that possess unique research and technology competencies in the field of advances manufacturing technologies; such teams and their leaders were identified; 2) in-depth interviews with research team leaders allowed to determine the most sought-after competencies for young researchers; 3) we compared the results of qualitative analysis (the in-depth interviews) with the final list of required competencies obtained in the process of analyzing job postings in the area of advanced technology in the UFD using the HeadHunter website. Thus, we identified the pools of the most sought-after competencies for the research and manufacturing sectors in the field of advanced manufacturing technologies. Identifying the most sought-after and in-demand competencies in theΒ UFD leading research teams can inform decision-making on updating university study programmes to ensure that student training matches the needs of the industry of science and technology in the UFD
Index of Inventive Activity of Russian Universities - 2022
ΠΠ½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅Π½ΡΡ Β«ΠΠΊΡΠΏΠ΅ΡΡΒ» ΠΏΠΎΠ΄Π²Π΅Π» ΠΈΡΠΎΠ³ΠΈ ΡΠ΅ΡΡΠΎΠΉ Π²ΠΎΠ»Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°ΡΠ΅Π½ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠΎΠ². ΠΡΠΎ ΡΠ°ΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ°, Π·Π°ΠΏΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π² 2016 Π³ΠΎΠ΄Ρ Ρ ΡΠ΅Π»ΡΡ ΠΎΡΠ΅Π½ΠΊΠΈ Π½Π°ΡΡΠ½ΡΡ
ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠΈΠΈ Π²ΡΠ·ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΠΎΠ²Π½Ρ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠ΅ΠΉ ΠΈΡ
Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ².The analytical center Β«ExpertΒ» summed up the results of the sixth wave of research on the Russian universitiesβ patent activity. This is part of a comprehensive project launched in 2016 to assess the scientific and technological competence of universities, as well as the level of their graduatesβ entrepreneurial abilities
Methodology for identifying the boundaries of agglomerations based on statistical data
ΠΡΡΠΎΠΊΠ°Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΡ ΡΡΠΎΠ²Π½Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π»Ρ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ² ΡΡΡΠ°Π½Ρ. Π‘ΠΈΠ½Ρ
ΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΡ ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΉ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈ ΠΏΠ»Π°Π½ΠΎΠ² ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² Π·Π°ΡΠ°ΡΡΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½Π° ΠΈΠ·-Π·Π° Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ, ΠΈΠΌΠ΅ΡΡΠΈΡ
Π½Π΅ΡΠΎΠ³Π»Π°ΡΡΡΡΠΈΠ΅ΡΡ Π΄ΡΡΠ³ Ρ Π΄ΡΡΠ³ΠΎΠΌ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ. ΠΡΠΈ ΡΡΠΎΠΌ Π·Π°ΡΠ°ΡΡΡΡ ΠΏΠ»Π°Π½Ρ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ ΠΈΠ·-Π·Π° ΠΎΡΡΡΡΡΡΠ²ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΡ
ΡΠ΅ΡΡΡΡΠΎΠ². ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π±ΡΠ»ΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ Π³ΡΡΠΏΠΏΡ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² (ΠΊΠ»ΡΡΠ΅Π²ΡΡ
Π΅Π΄ΠΈΠ½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠ΅Π»Π΅Π½ΠΈΡ), ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ°Π·Π²ΠΈΡΡΠ΅ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΡΠ·ΠΈ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΡΡ
ΠΎΠΆΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΡΠ°Π·Π²ΠΈΡΠΈΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»ΡΠ½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠ»ΡΡΠ΅Π²ΡΡ
Π΅Π΄ΠΈΠ½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠ΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠΏΡΡ Π΅Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π±ΡΠ»Π° ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡ
ΠΈ Π½Π° Π΄Π°Π½Π½ΡΡ
, ΠΊΠΎΡΠΎΡΡΠ΅ Π΄ΠΎΡΡΡΠΏΠ½Ρ Π½Π° ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ 6 ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ 1 ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΉ - Π²Π°Π»ΠΎΠ²ΡΠΉ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡ. Π Π°Π·Π½ΠΈΡΠ° Π² ΡΡΠΎΠ²Π½Π΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² ΠΏΠΎ ΠΏΠ΅ΡΠ²ΡΠΌ 6 ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»Π° ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Π½Π΅Π΅ ΡΠ°Π·Π²ΠΈΡΠΎΠ³ΠΎ ΠΏΠΎ Π½ΠΈΠΌ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠ° ΠΊ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π·Π²ΠΈΡΠΎΠΌΡ. Π Π°Π·ΠΌΠ΅Ρ Π²Π°Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΡΡ Π΄Π»Ρ ΡΡΠ΅ΡΠ° Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΡ ΠΊΡΡΠΏΠ½ΡΡ
ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² (Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ). Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠ°ΠΌΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π»ΠΎ ΠΈΡ
Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅. ΠΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΉ Π½Π°Π±ΠΎΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
Π°ΠΊΡΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π» Π²ΠΎΠΏΡΠΎΡ ΠΎΠ± ΠΈΡ
Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΠ³ΠΎ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π΅ΠΉ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠΈΠ΅ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠ΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΠΎ ΡΠ°ΡΡΠ΅Π»Π΅Π½ΠΈΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΈ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠ°ΠΌΠΈ ΡΠ΅Π³ΠΈΠΎΠ½Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈ ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΡΡΠΎΠΊΡΡ ΡΡ
ΠΎΠΆΠ΅ΡΡΡ. ΠΠΎΠ»ΡΡΠΈΠ²ΡΠ°ΡΡΡ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²ΠΊΠ° ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²ΡΠ΄Π΅Π»ΠΈΡΡ 21 ΠΊΠ»ΡΡΠ΅Π²ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠ΅Π»Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ Π‘Π²Π΅ΡΠ΄Π»ΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΊΡΡΠΏΠ½Π΅Π½Π½ΡΡ
Π³ΡΡΠΏΠΏ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π°Π½Π½ΡΡ
ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ΅ΡΠΎΠ² Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ Π‘Π²Π΅ΡΠ΄Π»ΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ, Π½ΠΎ ΠΈ Π΄Π»Ρ Π΄ΡΡΠ³ΠΈΡ
ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ² ΡΡΡΠ°Π½Ρ.Significant difference in development between the municipalities is an obstacle for achieving economic sustainability in many Russian regions. Regional development strategies and plans of various municipalities often cannot be synchronised because of their incompatibility. Moreover, municipalities usually lack necessary resources to implement their strategies. To solve these problems, we identified groups of municipalities (key units of the settlement system (KUSS)) based on the existing socio-economic relations, common challenges and development potential. We propose a methodology for identifying KUSS and describe its application. This methodology relies on statistical data available at the municipal level. To assess the interconnection of municipalities, we used 6 statistical socio-economic indicators and 1 integrated index of Gross Municipal Product (GMP). The difference in the first 6 indicators of the development of municipalities demonstrated, that less developed municipalities tend to more developed ones. We used the values of gross municipal product to define high mutual attraction of large municipalities (similar to the gravity model). The distance between municipalities reduced their mutual influence. Due to the limited data set, it was necessary to consider the reliability of the identified inter-municipal relations. Thus, we compared the obtained results with empirical data on population distribution and circular migration between municipalities in the region. The comparison of our calculations and actual data showed high precision of the presented methodology. The resulting grouping of municipalities allowed identifying 21 key units of the settlement system in Sverdlovsk oblast. The proposed methodology can be usedfor determining large groups of municipalities in Sverdlovsk oblast, as well as in other Russian regions.Π Π°Π±ΠΎΡΠ° Π±ΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ ΠΠΈΠ½ΠΈΡΡΠ΅ΡΡΡΠ²Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ ΠΈ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π‘Π²Π΅ΡΠ΄Π»ΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ.The article has been prepared with the support of the Ministry of Economy and Territorial Development of Sverdlovsk oblast
Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example
We study a simple system described by a 2x2 Hamiltonian and the evolution of
the quantum states under the influence of a perturbation. More precisely, when
the initial Hamiltonian is not degenerate,we check analytically the validity of
the adiabatic approximation and verify that, even if the evolution operator has
no limit for adiabatic switchings, the Gell-Mann and Low formula allows to
follow the evolution of eigenstates. In the degenerate case, for generic
initial eigenstates, the adiabatic approximation (obtained by two different
limiting procedures) is either useless or wrong, and the Gell-Mann and Low
formula does not hold. We show how to select initial states in order to avoid
such failures.Comment: 6 pages, 2 figure
- β¦