172 research outputs found

    Kinetic analysis of pre-ribosome structure in vivo

    Get PDF
    Pre-ribosomal particles undergo numerous structural changes during maturation, but their high complexity and short lifetimes make these changes very difficult to follow in vivo. In consequence, pre-ribosome structure and composition have largely been inferred from purified particles and analyzed in vitro. Here we describe techniques for kinetic analyses of the changes in pre-ribosome structure in living cells of Saccharomyces cerevisiae. To allow this, in vivo structure probing by DMS modification was combined with affinity purification of newly synthesized 20S pre-rRNA over a time course of metabolic labeling with 4-thiouracil. To demonstrate that this approach is generally applicable, we initially analyzed the accessibility of the region surrounding cleavage site D site at the 3′ end of the mature 18S rRNA region of the pre-rRNA. This revealed a remarkably flexible structure throughout 40S subunit biogenesis, with little stable RNA–protein interaction apparent. Analysis of folding in the region of the 18S central pseudoknot was consistent with previous data showing U3 snoRNA–18S rRNA interactions. Dynamic changes in the structure of the hinge between helix 28 (H28) and H44 of pre-18S rRNA were consistent with recently reported interactions with the 3′ guide region of U3 snoRNA. Finally, analysis of the H18 region indicates that the RNA structure matures early, but additional protection appears subsequently, presumably reflecting protein binding. The structural analyses described here were performed on total, affinity-purified, newly synthesized RNA, so many classes of RNA and RNA–protein complex are potentially amenable to this approach

    Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits

    Get PDF
    In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of the cytoplasmic translation initiation factor eIF5b/Fun12. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associate with Fun12 and form 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP-hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together

    C. elegans Nucleostemin Is Required for Larval Growth and Germline Stem Cell Division

    Get PDF
    The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell–specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1) in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1) leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis

    Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel

    Get PDF
    Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Ã… resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation

    Characterization of FUS Mutations in Amyotrophic Lateral Sclerosis Using RNA-Seq

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting in severe muscle weakness and eventual death by respiratory failure. Although little is known about its pathogenesis, mutations in fused in sarcoma/translated in liposarcoma (FUS) are causative for familial ALS. FUS is a multifunctional protein that is involved in many aspects of RNA processing. To elucidate the role of FUS in ALS, we overexpressed wild-type and two mutant forms of FUS in HEK-293T cells, as well as knocked-down FUS expression. This was followed by RNA-Seq to identify genes which displayed differential expression or altered splicing patterns. Pathway analysis revealed that overexpression of wild-type FUS regulates ribosomal genes, whereas knock-down of FUS additionally affects expression of spliceosome related genes. Furthermore, cells expressing mutant FUS displayed global transcription patterns more similar to cells overexpressing wild-type FUS than to the knock-down condition. This observation suggests that FUS mutants do not contribute to the pathogenesis of ALS through a loss-of-function. Finally, our results demonstrate that the R521G and R522G mutations display differences in their influence on transcription and splicing. Taken together, these results provide additional insights into the function of FUS and how mutations contribute to the development of ALS.ALS Foundation NetherlandsAdessium FoundationSeventh Framework Programme (European Commission) (grant number 259867)Thierry Latran FoundationNational Institutes of Health (U.S.) (NIH/NINDS grant R01NS073873)National Institute of Neurological Disorders and Stroke (U.S.) (NIH/NINDS grant numbers 1R01NS065847

    Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis

    Get PDF
    Background Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Methods Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. Results We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Conclusions Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA

    Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis

    Get PDF
    BACKGROUND: Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. METHODS: Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. RESULTS: We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. CONCLUSIONS: Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA

    Nucleolus: the fascinating nuclear body

    Get PDF
    Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed
    • …
    corecore