20 research outputs found
Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies
We examine the ability for the Large Area Telescope (LAT) to constrain
Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined
analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest
Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid
supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find
that none of these models can be excluded at 95% confidence by the current
analysis; nevertheless, many lie within the predicted reach of future LAT
analyses. With two years of data, we find that the LAT is currently most
sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and
heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT
analyses will be able to probe some LSPs that form a sub-dominant component of
dark matter. We directly compare the LAT results to direct detection
experiments and show the complementarity of these search methods.Comment: 24 pages, 9 figures, submitted to JCA
Bailing Out the Milky Way: Variation in the Properties of Massive Dwarfs Among Galaxy-Sized Systems
Recent kinematical constraints on the internal densities of the Milky Way's
dwarf satellites have revealed a discrepancy with the subhalo populations of
simulated Galaxy-scale halos in the standard CDM model of hierarchical
structure formation. This has been dubbed the "too big to fail" problem, with
reference to the improbability of large and invisible companions existing in
the Galactic environment. In this paper, we argue that both the Milky Way
observations and simulated subhalos are consistent with the predictions of the
standard model for structure formation. Specifically, we show that there is
significant variation in the properties of subhalos among distinct host halos
of fixed mass and suggest that this can reasonably account for the deficit of
dense satellites in the Milky Way. We exploit well-tested analytic techniques
to predict the properties in a large sample of distinct host halos with a
variety of masses spanning the range expected of the Galactic halo. The
analytic model produces subhalo populations consistent with both Via Lactea II
and Aquarius, and our results suggest that natural variation in subhalo
properties suffices to explain the discrepancy between Milky Way satellite
kinematics and these numerical simulations. At least ~10% of Milky Way-sized
halos host subhalo populations for which there is no "too big to fail" problem,
even when the host halo mass is as large as M_host = 10^12.2 h^-1 M_sun.
Follow-up studies consisting of high-resolution simulations of a large number
of Milky Way-sized hosts are necessary to confirm our predictions. In the
absence of such efforts, the "too big to fail" problem does not appear to be a
significant challenge to the standard model of hierarchical formation.
[abridged]Comment: 12 pages, 3 figures; accepted by JCAP. Replaced with published
versio
Recommended from our members
Pegasus IV: Discovery and Spectroscopic Confirmation of an Ultra-faint Dwarf Galaxy in the Constellation Pegasus
We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system (r1 2 = 41-+68 pc; MV = â4.25 ± 0.2 mag) located at a heliocentric distance of 90-+64 kpc. Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IVâs velocity dispersion, measuring sv = 3.3-+1.11.7 km sâ1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M1 2 LV,1 2 = 167-+99224Mâ Lâ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] =-2.63-+0.300.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IVâs proper motion using data from Gaia Early Data Release 3, finding (Όα*, ΌΎ) = (0.33 ± 0.07, â0.21 ± 0.08) mas yrâ1. When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the systemâs centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc
The Large Magellanic Cloud in the SDSS and LCDM: Is There A âFound Satellites Problemâ?
Substructure in ÎCDM provides a number of interesting puzzles. While the missing satellites problem is well-studied, there are suggestions of an opposite problem on the bright end. Subhalos large enough to host luminous satellites are uncommon, so the existence of the Large Magellanic Cloud (LMC) orbiting the Galaxy can potentially be a challenge for ÎCDM. Hence, we describe a search for analogs to an isolated galaxy pair like the Milky Way/LMC system in the SDSS and interpret these results with cosmological simulations. We note that while the LMC may not be unusual based on its luminosity, it is remarkably blue for such satellites. Thus, color may have implications for the LMCâs orbital history
Recommended from our members
The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way-like Galaxies
We present the Stage II results from the ongoing Satellites Around Galactic Analogs (SAGA) Survey. Upon completion, the SAGA Survey will spectroscopically identify satellite galaxies brighter than M r,o = -12.3 around 100 Milky Way (MW) analogs at z ⌠0.01. In Stage II, we have more than quadrupled the sample size of Stage I, delivering results from 127 satellites around 36 MW analogs with an improved target selection strategy and deep photometric imaging catalogs from the Dark Energy Survey and the Legacy Surveys. We have obtained 25,372 galaxy redshifts, peaking around z = 0.2. These data significantly increase spectroscopic coverage for very low redshift objects in 17 < r o < 20.75 around SAGA hosts, creating a unique data set that places the Local Group in a wider context. The number of confirmed satellites per system ranges from zero to nine and correlates with host galaxy and brightest satellite luminosities. We find that the number and luminosities of MW satellites are consistent with being drawn from the same underlying distribution as SAGA systems. The majority of confirmed SAGA satellites are star-forming, and the quenched fraction increases as satellite stellar mass and projected radius from the host galaxy decrease. Overall, the satellite quenched fraction among SAGA systems is lower than that in the Local Group. We compare the luminosity functions and radial distributions of SAGA satellites with theoretical predictions based on cold dark matter simulations and an empirical galaxy-halo connection model and find that the results are broadly in agreement. © 2021. The American Astronomical Society. All rights reserved..Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Extending the SAGA Survey (xSAGA). I. Satellite Radial Profiles as a Function of Host-galaxy Properties
We present "Extending the Satellites Around Galactic Analogs Survey"(xSAGA), a method for identifying low-z galaxies on the basis of optical imaging and results on the spatial distributions of xSAGA satellites around host galaxies. Using spectroscopic redshift catalogs from the SAGA Survey as a training data set, we have optimized a convolutional neural network (CNN) to identify z 100,000 CNN-selected low-z galaxies, we identify >20,000 probable satellites located between 36-300 projected kpc from NASA-Sloan Atlas central galaxies in the stellar-mass range 9.5<log(M/M)<11. We characterize the incompleteness and contamination for CNN-selected samples and apply corrections in order to estimate the true number of satellites as a function of projected radial distance from their hosts. Satellite richness depends strongly on host stellar mass, such that more-massive host galaxies have more satellites, and on host morphology, such that elliptical hosts have more satellites than disky hosts with comparable stellar masses. We also find a strong inverse correlation between satellite richness and the magnitude gap between a host and its brightest satellite. The normalized satellite radial distribution between 36-300 kpc does not depend on host stellar mass, morphology, or magnitude gap. The satellite abundances and radial distributions we measure are in reasonable agreement with predictions from hydrodynamic simulations. Our results deliver unprecedented statistical power for studying satellite galaxy populations and highlight the promise of using machine-learning for extending galaxy samples of wide-area surveys. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Hubble Space Telescope Imaging of Isolated Local Volume Dwarfs GALFA Dw3 and Dw4
We present observations of the dwarf galaxies GALFA Dw3 and GALFA Dw4 with the Advanced Camera for Surveys on the Hubble Space Telescope. These galaxies were initially discovered as optical counterparts to compact H i clouds in the GALFA survey. Both objects resolve into stellar populations which display old red giant branch (RGB), younger helium-burning, and massive main sequence stars. We use the tip of the RGB method to determine the distance to each galaxy, finding distances of Mpc and Mpc, respectively. With these distances we show that both galaxies are extremely isolated, with no other confirmed objects within âŒ1.5 Mpc of either dwarf. GALFA Dw4 is also found to be unusually compact for a galaxy of its luminosity. GALFA Dw3 and Dw4 contain H ii regions with young star clusters and an overall irregular morphology; they show evidence of ongoing star formation through both ultraviolet and Hα observations and are therefore classified as dwarf irregulars (dIrrs). The star formation histories of these two dwarfs show distinct differences: Dw3 shows signs of a recently ceased episode of active star formation across the entire dwarf, while Dw4 shows some evidence for current star formation in spatially limited H ii regions. Compact H i sources offer a promising method for identifying isolated field dwarfs in the Local Volume, including GALFA Dw3 and Dw4, with the potential to shed light on the driving mechanisms of dwarf galaxy formation and evolution. © 2022. The Author(s). Published by the American Astronomical Society.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]