3 research outputs found

    The decomposition of standardised organic materials in loam and clay loam arable soils during a non-vegetation period

    Get PDF
    The decomposition of plant organic materials in the soil during the non-vegetation period in a cool temperate climate is associated with nutrient loss and asynchrony in nutrient supply for subsequent crops. Therefore, it is important to select sustainable management tools to regulate the decomposition rate of organic material during the non-vegetation period. The aim of the present study was to assess the influence of soil type (loam vs. clay loam), green manuring (wheat straw vs. wheat straw + red clover), and incorporation depth of organic materials (4–7 vs. 14–17 cm) on mass loss, decomposition rate and stabilization of standardised organic material in the organically managed arable soils. A Tea Bag Index method was used in the field experiments with standardised organic plant materials of green and rooibos tea. In addition, litter-bags of locally grown red clover were investigated. The findings of this study suggested that of the three management factors investigated soil type had a significant and longest effect. The mass loss and decomposition rate of the standardised organic materials were significantly (P < 0.5) higher and stabilization significantly lower in the loam soil than in the clay loam soil. During the non-vegetation period, green tea lost 46.3% of its initial mass, rooibos tea lost 19.7% and red clover lost 66%. The study showed that decomposition of fast-decomposing materials could be slowed down during the non-vegetation period by choosing soils with a higher clay content, shallow organic material incorporation depth and manuring soil with N-rich plant residues

    Trans European decomposition index study in arable soils with different crop species diversity using 13C-labelled litter

    Get PDF
    Póster presentado en la Sessión 8 en el Joint European Stable Isotope Users group Meeting JESIUM 2022 Kuopio, Finland Online 10–14 October 2022.Mixed species systems are currently increasing in area in Europe providing opportunities for sustainable intensification of agriculture. The agroforestry systems cover about 9% of the utilized agricultural area and integrated crop livestock systems occupy a major place in the European agricultural area including perennial forage grasses and grasslands sown with varying degrees of duration. Intercropping and other mixed cash crop systems are currently less developed in the EU. The EU EJP-SOIL funded MIXROOT-C project (2021-2024) is gaining a management-oriented understanding of the effect of mixed-species root systems on carbon flow and organic matter accumulation in European agricultural soils.N

    Optimisation of the conservation of rare and vulnerable plant species in the perspective of climate change in Lithuanian (nature) reserves

    No full text
    Nature reserves are one of the most important measures in saving biodiversity, however, during the climate change, a real danger arises, that these territories would not be able to fulfill the objectives. In order to mitigate negative effects of climate change in protected areas it is necessary to create and apply management programs, based on future ecosystems needs. The main aim of presented study was to evaluate sensitivity of rare and vulnerable species to climate change in order to suggest measures for better management of nature reserves in the future. According to scientific literature, 12 biological and ecological plant characteristics determining sensitivity of species (limiting factors) have been detected. 73 plant species that are protected in Lithuanian reserves were evaluated qualitatively according to limiting factors of climate change. As the result, it was offered to apply additional protection measures to 47 species in the light of climate change. Groups of plant species that should be affected highly negatively or highly positively were identified. 16% of plant species protected in nature reserves were evaluated as very sensitive to climate change and the condition of these plants may worsen. On the other hand, 14 plant species were given as least sensitive to negative effects and future climate is more favorable to species growth and spread than the existing. The highest danger is predicted for Silene chlorantha (Willd.) Ehrh., and the best condition is predicted for Mentha longifolia (L.) Huds. Dactylorhiza incarnata (L.) Soó. The study also gives recommendations for the protection of rare plants in the future. Different management measures are taken into account: mitigation of the direct effect of climate change (I), improvement of an existing level of rareness (II), respecting the relation to physical and biological environment (III), consideration of spread and geographical limits (IV). Three management intensity levels were suggested according to species sensitivity
    corecore